19.函數(shù)y=arccosx在x∈[-1,$\frac{1}{2}$]]的值域是[$\frac{π}{3}$,π].

分析 利用x∈[-1,$\frac{1}{2}$],cosπ=-1,$cos\frac{π}{3}$=$\frac{1}{2}$,y∈[0,π].即可得出.

解答 解:∵x∈[-1,$\frac{1}{2}$],cosπ=-1,$cos\frac{π}{3}$=$\frac{1}{2}$,y∈[0,π].
∴$\frac{π}{3}≤y≤π$,
故答案為:$[\frac{π}{3},π]$.

點(diǎn)評(píng) 本題考查了反三角函數(shù)的求值、單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知x+x-1=3(x>0),求x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值;
(2)已知log4(3x-1)=log4(x-1)+log4(3+x),求實(shí)數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對(duì)于函數(shù)f(x)的定義域中任意的x1、x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
④f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$.
當(dāng)f(x)=2x時(shí),上述結(jié)論中正確的有( 。﹤(gè).
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-4,x>0}\\{-x-3,x<0}\end{array}\right.$,若f(a)>f(1),則實(shí)數(shù)a的取值范圍是a>1或a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.用數(shù)學(xué)歸納法證明2+3+4+…+n=$\frac{(n-1)(n+2)}{2}$時(shí),第一步取n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={1,2,3,4,5}且對(duì)應(yīng)關(guān)系f:x→y=x(x-4)是從A到B的映射,則集合B中至少有( 。﹤(gè)元素.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若f(cosx)=coskx(k∈Z),則f(sinx)=sinkx,則整數(shù)k應(yīng)滿足的條件為k=4n+1,n∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.證明函數(shù)f(x)=$\frac{2-x}{x+2}$在(-2,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E、F別是AB、PD的中點(diǎn).若PA=AD=CD=4.
(Ⅰ)求證:EF⊥AC;
(Ⅱ)求直線FC平面PCE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案