8.證明函數(shù)f(x)=$\frac{2-x}{x+2}$在(-2,+∞)上是減函數(shù).

分析 變形利用減函數(shù)的定義即可證明.

解答 解:f(x)=$\frac{2-x}{x+2}$=$\frac{4}{x+2}$-1,
?x1,x2∈(-2,+∞),且x1<x2
∴f(x1)-f(x2)=$\frac{4}{{x}_{1}+2}-1$-$(\frac{4}{{x}_{2}+2}-1)$=$\frac{4({x}_{2}-{x}_{1})}{({x}_{1}+2)({x}_{2}+2)}$,
∵x1,x2∈(-2,+∞),且x1<x2
∴x1+2>0,x2+2>0,x2-x1>0,
∴$\frac{4({x}_{2}-{x}_{1})}{({x}_{1}+2)({x}_{2}+2)}$>0,
∴f(x1)>f(x2),
∴函數(shù)f(x)=$\frac{2-x}{x+2}$在(-2,+∞)上是減函數(shù).

點(diǎn)評(píng) 本題考查了減函數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知f(x)=ex,g(x)=mx+n,若對(duì)任意實(shí)數(shù)x,都有f(x)≥g(x),則mn的最大值為$\frac{e}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)y=arccosx在x∈[-1,$\frac{1}{2}$]]的值域是[$\frac{π}{3}$,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.跳廣場(chǎng)舞是現(xiàn)在廣大市民喜愛(ài)的戶外健身運(yùn)動(dòng),某健身運(yùn)動(dòng)公司為了解本地區(qū)市民對(duì)跳廣場(chǎng)舞的熱衷程度,隨機(jī)抽取了100名跳廣場(chǎng)舞的市民,統(tǒng)計(jì)其年齡(單位:歲)并整理得到如下的頻率分布直方圖(其中年齡的分組區(qū)間分別為[20,30),[30,40),[40,50),[50,60),[60,70]),其中女性市民有55名,將所抽樣本中年齡不小于50歲跳廣場(chǎng)舞的市民稱(chēng)為“廣舞迷”.已知其中有30名女性廣舞迷.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為廣舞迷與性別有關(guān)?
 廣舞迷非廣舞迷合計(jì)
   
   
合計(jì)   
(2)將所抽樣本中不小于60歲的廣舞迷稱(chēng)為“超級(jí)廣舞迷”,現(xiàn)從廣舞迷中隨機(jī)抽出2名市民,求其中超級(jí)廣舞迷人數(shù)的分布列與期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;
P(K2≥k00.050.0250.0100.005
 k03.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)f(x)=x(x-1)(x-2)…(x-n)(n∈N+),求f′(0)及f(n+1)(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)f(α)=$\frac{sin(π-α)cos(2π-α)}{cos(-α-π)tan(π+α)}$ 其中α是第三象限角.
(1)化簡(jiǎn)f(α);
(2)若cos{$α-\frac{3π}{2}$)=$\frac{1}{5}$,求f(α);
(3)若α=-1860°,求f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知sin(3π+α)=2cos(α-4π),求$\frac{cos(\frac{π}{2}-α)+5sin(\frac{π}{2}+α)}{2cos(π+α)-sin(-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=ax3+bx+4(a,b∈R),f(lg(log210))=5,則f(lg(lg2))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=x2+2xf′(1)-6,則f′(1)等于( 。
A.4B.-2C.0D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案