6.已知在數(shù)列{an}中,a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{-{a}_{n}+3,{a}_{n}≤2}\end{array}\right.$(n∈N*),記Sn=a1+a2+…an.若Sn=2015,則n=1343.

分析 a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{-{a}_{n}+3,{a}_{n}≤2}\end{array}\right.$(n∈N*),可得a2=-a1+3=-a+3.分類討論:當(dāng)a∈(0,1)時(shí),可得an+4=an.當(dāng)a∈[1,2]時(shí),可得:an+2=an.即可得出.

解答 解:∵a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{-{a}_{n}+3,{a}_{n}≤2}\end{array}\right.$(n∈N*),
∴a2=-a1+3=-a+3.
①當(dāng)a∈(0,1)時(shí),3-a∈(2,3),∴a3=a2-2=1-a∈(0,1),∴a4=-a3+3=a+2∈(2,3),∴a5=a4-2=a∈(0,1),…,∴an+4=an
∴a1+a2+a3+a4=a+(-a+3)+(1-a)+(a+2)=6.
∵Sn=2015=335×6+5,∴a1=a≠5,a1+a2=3≠5,a1+a2+a3=4-a≠5,舍去.
②當(dāng)a∈[1,2]時(shí),3-a∈[1,2],∴a3=-a2+3=a∈[1,2],∴an+2=an
∵a1+a2=3,
∴Sn=2015=671×3+2,a1=a=2時(shí),n=671×2+1=1343.
故答案為:1343.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、分類討論方法、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知一條雙曲線的漸近線方程為y=$\frac{1}{2}$x,且通過(guò)點(diǎn)A(3,3),則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{27}{4}}$-$\frac{{x}^{2}}{27}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.我校為了豐富同學(xué)們的課余生活,特舉辦了一次挑戰(zhàn)主持人大賽,如圖是七位評(píng)委為某選手打出的分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(  )
A.4;4B.5;1.6C.84;4D.85;1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=lg(2+x)-lg(2-x).
(1)判定函數(shù)f(x)的奇偶性,并加以證明;
(2)判定f(x)的單調(diào)性(不用證明),并求不等式f(1-x)+f(3-2x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求適合下列各條件的直線的方程:
(1)自點(diǎn)P(-3,3)發(fā)出的光線射到x軸上,被x軸反射,其反射光線與⊙C:(x-2)2+(y-2)2=1相切;
(2)直線過(guò)定點(diǎn)P(5,10)且與原點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若x、y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{y≤x}\\{y≥1}\end{array}\right.$,z=ax+y最大時(shí)的最優(yōu)解有無(wú)數(shù)個(gè),則a=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.水是最常見(jiàn)的物質(zhì)之一,是包括人類在內(nèi)所有生命生存的重要資源,也是生物體最重要的組成部分,為了推動(dòng)對(duì)水資源迸行綜合性統(tǒng)籌規(guī)劃和管理,加強(qiáng)水資源保護(hù),解決日益嚴(yán)峻的淡水缺乏問(wèn)題,開(kāi)展廣泛的宣傳以提高公眾對(duì)開(kāi)發(fā)和保護(hù)水資源的認(rèn)識(shí),中國(guó)水利部確定每年的3月22日至28日為“中國(guó)水周”,以提倡市民節(jié)約用水.某市統(tǒng)計(jì)局凋查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如圖所示.將月用水量落人各組的頻率視為概率,并假設(shè)每天的用水量相互獨(dú)立.
(I)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)該地家庭的平均用水量;
(Ⅱ)求在未來(lái)連續(xù)3個(gè)月里,有連續(xù)2個(gè)月的月用水量都不低于12噸且另1個(gè)月的用水量低于4噸的概率;
(Ⅲ)用X表示在未來(lái)3個(gè)月里月用水量不低于12噸的月數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.等差數(shù)列{an}中,d<0.
(1)若|a3|=|a9|,則數(shù)列{an}的前幾項(xiàng)的和最大?
(2)若Sm=Sk,則數(shù)列{an}的前幾項(xiàng)的和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知ω>0,|φ|<$\frac{π}{2}$,若x=$\frac{π}{6}$和x=$\frac{7π}{6}$是函數(shù)f(x)=cos(ωx+φ)的兩個(gè)相鄰的極值點(diǎn),將y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位得到函數(shù)y=g(x)的圖象,則下列說(shuō)法正確的是( 。
A.y=g(x)是奇函數(shù)B.y=g(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{2}$,0)對(duì)稱
C.y=g(x)的圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱D.y=g(x)的周期為π

查看答案和解析>>

同步練習(xí)冊(cè)答案