分析 a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{-{a}_{n}+3,{a}_{n}≤2}\end{array}\right.$(n∈N*),可得a2=-a1+3=-a+3.分類討論:當a∈(0,1)時,可得an+4=an.當a∈[1,2]時,可得:an+2=an.即可得出.
解答 解:∵a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{{a}_{n}-2,{a}_{n}>2}\\{-{a}_{n}+3,{a}_{n}≤2}\end{array}\right.$(n∈N*),
∴a2=-a1+3=-a+3.
①當a∈(0,1)時,3-a∈(2,3),∴a3=a2-2=1-a∈(0,1),∴a4=-a3+3=a+2∈(2,3),∴a5=a4-2=a∈(0,1),…,∴an+4=an.
∴a1+a2+a3+a4=a+(-a+3)+(1-a)+(a+2)=6.
∵Sn=2015=335×6+5,∴a1=a≠5,a1+a2=3≠5,a1+a2+a3=4-a≠5,舍去.
②當a∈[1,2]時,3-a∈[1,2],∴a3=-a2+3=a∈[1,2],∴an+2=an.
∵a1+a2=3,
∴Sn=2015=671×3+2,a1=a=2時,n=671×2+1=1343.
故答案為:1343.
點評 本題考查了遞推關系、分類討論方法、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4;4 | B. | 5;1.6 | C. | 84;4 | D. | 85;1.6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=g(x)是奇函數(shù) | B. | y=g(x)的圖象關于點(-$\frac{π}{2}$,0)對稱 | ||
C. | y=g(x)的圖象關于直線x=$\frac{π}{2}$對稱 | D. | y=g(x)的周期為π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com