【題目】設(shè)函數(shù),已知在處的切線相同.
(1)求的值及切線的方程;
(2)設(shè)函數(shù),若存在實(shí)數(shù)使得關(guān)于的不等式對(duì)上的任意實(shí)數(shù)恒成立,求的最小值及對(duì)應(yīng)的的解析式.
【答案】(1),(2)的最小值為2,
【解析】
試題分析:(1)由導(dǎo)數(shù)幾何意義得,又切點(diǎn)相同,所以,從而可列方程組且,解得,,再根據(jù)點(diǎn)斜式得切線方程:(2)由題意可得為函數(shù)的一條公切線,先求公切線,易得:,解得公切線為,再證恒成立
試題解析:解:(1),
由已知且,
∴且,得,
又,∴,
∴,
∴切線的方程為, 即
(2)由(1)知,,又因?yàn)?/span>,
可知,
①由對(duì)恒成立,
即對(duì)恒成立,
所以,解得①
②由對(duì)恒成立,即設(shè),
則,令,得,
當(dāng)時(shí),單調(diào)遞增;
當(dāng)時(shí),單調(diào)遞減,
故,
則,故得,②
由①②得,③
由存在實(shí)數(shù)使得③成立的充要條件 是:不等式,有解,該不等式可化為有解
令,則有,設(shè),
,
可知在上遞增,在上遞減,
又,所以在區(qū)間內(nèi)存在一個(gè)零點(diǎn),故不等式的解為即,得,
因此的最小值為2,代入③中得,故,此時(shí)對(duì)應(yīng)的的解析式為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l、m 、n 與平面α、β給出下列四個(gè)命題:
①若m∥l,n∥l,則m∥n; ②若m⊥α,m∥β,則α⊥β;
③若m∥α,n∥α,則m∥n;④若m⊥β,α⊥β,則m∥α
其中,假命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,延長(zhǎng)CD至E,使得DE=CD.若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿正方形的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到A點(diǎn),其下列敘述正確的是( )
A. 滿(mǎn)足λ+μ=2的點(diǎn)P必為BC的中點(diǎn)
B. 滿(mǎn)足λ+μ=1的點(diǎn)P有且只有一個(gè)
C. λ+μ的最大值為3
D. λ+μ的最小值不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,分別求滿(mǎn)足下列條件的a,b值
(1)l1⊥l2,且直線l1過(guò)點(diǎn)(﹣3,﹣1);
(2)l1∥l2,且直線l1在兩坐標(biāo)軸上的截距相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,點(diǎn)在平面內(nèi)的射影在棱上,,底面是梯形,,且.
(1)求證:平面平面;
(2)若直線與所成角為60°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形中,為的中點(diǎn),將 沿折起,使得平面平面.
(1)求證:;
(2)若點(diǎn)是線段上的一動(dòng)點(diǎn),問(wèn)點(diǎn)在何位置時(shí),三棱錐的體積與四棱錐的體積之比為1:3?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題中:
①函數(shù)的一個(gè)對(duì)稱(chēng)中心為;
②若, 為第一象限角,且,則;
③若,則存在實(shí)數(shù),使得;
④點(diǎn)是三角形所在平面內(nèi)一點(diǎn),且滿(mǎn)足,則點(diǎn)是三角形的內(nèi)心.
其中正確的序號(hào)是__________.(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程并指出其形狀;
(2)設(shè)是曲線上的動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列、滿(mǎn)足: .
(1)求;
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)設(shè),不等式恒成立時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com