分析 x>0時,-x<0,根據(jù)已知可求得f(-x),根據(jù)奇函數(shù)的性質(zhì)f(x)=-f(-x)即可求得f(x)的表達式.
解答 解:x>0時,-x<0,
∵x<0時,f(x)=-x2-1,
∴當x>0時f(-x)=-(-x)2-1=-x2-1,
∵f(x)是R上的奇函數(shù),
∴當x>0時,f(x)=-f(-x)=x2+1
當x=0時,f(0)=0,
故f(x)=$\left\{\begin{array}{l}-{x}^{2}-1,x<0\\ 0,x=0\\{x}^{2}+1,x>0\end{array}\right.$
故答案為:$\left\{\begin{array}{l}-{x}^{2}-1,x<0\\ 0,x=0\\{x}^{2}+1,x>0\end{array}\right.$
點評 本題考查函數(shù)解析式的求解,利用了奇函數(shù)的性質(zhì)f(x)=-f(-x),計算簡單,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com