10.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+4≥0}\\{0≤x≤4}\end{array}\right.$,則z=3x-y的最小值是-4.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+4≥0}\\{0≤x≤4}\end{array}\right.$作出可行域如圖,

化目標(biāo)函數(shù)z=3x-y為y=3x-z,
由圖可知,當(dāng)直線y=3x-z過(guò)點(diǎn)C(0,4)時(shí)直線在y軸上的截距最大,z有最小值為-4.
故答案為:-4.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖:如果輸入x∈R,y∈R,那么輸出的S的最小值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若z1=1-3i,z2=6-8i,且$\frac{1}{z}$+$\frac{1}{{z}_{1}}$=$\frac{1}{{z}_{2}}$,則z的值為$-\frac{4}{5}$+$\frac{22}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知A=(1-a,4),B=[-4,a),若A?B,則實(shí)數(shù)a的取值范圍是[4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知sinα=$\frac{1}{5}$+cosα,且$α∈(0,\frac{π}{2})$,則$\frac{{\sqrt{2}cos(α+\frac{π}{4})}}{cos2α}$的值為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知角A、B、C為△ABC的三個(gè)內(nèi)角,其對(duì)邊分別為a、b、c,若a2=b2+c2+bc,且a=2$\sqrt{3}$.
(Ⅰ)若△ABC的面積S=$\sqrt{3}$,求b+c的值;     
(Ⅱ)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)為R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=-x2-1,則當(dāng)x∈R時(shí),f(x)=$\left\{\begin{array}{l}-{x}^{2}-1,x<0\\ 0,x=0\\{x}^{2}+1,x>0\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x2+(a+2)x+2.
(1)若y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
(2)求函數(shù)f(x)在區(qū)間[-5,5]的最小值g(a).

查看答案和解析>>

同步練習(xí)冊(cè)答案