19.已知定義域?yàn)閇a-2,2a-1]的奇函數(shù)f(x)=x3-sinx+b+1,則f(a)+f(b)的值為( 。
A.0B.1C.2D.不能確定

分析 利用函數(shù)是奇函數(shù),求出a,b,推出函數(shù)的解析式,然后求解函數(shù)值.

解答 解:定義域?yàn)閇a-2,2a-1]的奇函數(shù)f(x)=x3-sinx+b+1,
可得2-a=2a-1,解得a=1,
f(0)=0,可得b+1=0,所以b=-1.
函數(shù)f(x)=x3-sinx,
則f(a)+f(b)=f(1)+f(-1)=f(1)-f(1)=0.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的性質(zhì)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知O是銳角三角形ABC的外接圓圓心,tanA=$\frac{1}{2}$,$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=2m$\overrightarrow{AO}$,則m=$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.運(yùn)行如圖所示的利程序后,輸出的結(jié)果為9,7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個(gè)總體中有80個(gè)個(gè)體,隨機(jī)編號(hào)為0,1,2,…,79,依編號(hào)順序平均分成8個(gè)小組,組號(hào)依次為1,2,3,…,8.現(xiàn)用系統(tǒng)抽樣方法抽取一個(gè)容量為8的樣本,若在第1組隨機(jī)抽取的號(hào)碼為5,則在第6組中抽取的號(hào)碼是55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3-x2-x-a,若函數(shù)f(x)過點(diǎn)A(1,0),求函數(shù)在區(qū)間[-1,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=4,Sn+Sn+1=$\frac{5}{3}$an+1(n∈N*),則Sn=4n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某工廠為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組檢測(cè)數(shù)據(jù)(x1,y1)(i=1,2,…6)如表所示:
試銷價(jià)格x(元)4567a9
產(chǎn)品銷量y(件)b8483807568
已知變量x,y具有線性負(fù)相關(guān)關(guān)系,且$\sum_{i=1}^{6}$xi=39,$\sum_{i=1}^{6}$yi=480,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得其歸直線方程分別為:甲y=4x+54;乙y=-4x+106;丙y=-4.2x+105,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.
(1)試判斷誰的計(jì)算結(jié)果正確?并求出a,b的值;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過1,則該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)“,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取3個(gè),求“理想數(shù)據(jù)“的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知(2x-1)n=a0+a1x+a2x2+…+anxn,且n是偶數(shù),則a0+$\frac{1}{2}$a1+$\frac{1}{3}$a2+$\frac{1}{4}$a3+…+$\frac{1}{n}$an-1+$\frac{1}{n+1}$an=$\frac{1}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計(jì)算:-2-2-$\sqrt{(-3)^{2}}$+(π-3.14)0+$\sqrt{\frac{1}{8}}$sin45°=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案