【題目】下圖1,是某設(shè)計員為一種商品設(shè)計的平面logo樣式.主體是由內(nèi)而外的三個正方形構(gòu)成.該圖的設(shè)計構(gòu)思如圖2,中間正方形的四個頂點,分別在最外圍正方形ABCD的邊上,且分所在邊為a,b兩段.設(shè)中間陰影部分的面積為,最內(nèi)正方形的面積為.當(dāng),且取最大值時,定型該logo的最終樣式,則此時a,b的取值分別為_____________.

【答案】

【解析】

設(shè),其中,求得,根據(jù)圖形求得的表達(dá)式,得到,利用基本不等式,即可求解.

由題意,設(shè),其中,

又由,聯(lián)立方程組可得

又由陰影部分的三角形為直角邊分別為的直角三角形,

所以陰影部分的面積為,

最內(nèi)正方形的邊長為,所以面積為,

,當(dāng)且僅當(dāng)時,即時等號成立,

當(dāng)時,;

當(dāng)時,.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,討論的單調(diào)性;

(2)證明:當(dāng)時,只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,PO垂直于圓O所在的平面,且.D為線段AC的中點.

(1)求證:平面平面;

(2)若點E在線段PB上,且,求三棱錐體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(b+ctanC=﹣ctanA

1)求A;

2)若b,c2,點DBC邊上,且ADBD,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖1,是某設(shè)計員為一種商品設(shè)計的平面logo樣式.主體是由內(nèi)而外的三個正方形構(gòu)成.該圖的設(shè)計構(gòu)思如圖2,中間正方形的四個頂點,分別在最外圍正方形ABCD的邊上,且分所在邊為a,b兩段.設(shè)中間陰影部分的面積為,最內(nèi)正方形的面積為.當(dāng),且取最大值時,定型該logo的最終樣式,則此時a,b的取值分別為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為,兩個焦點與短軸一個頂點構(gòu)成等腰直角三角形,過點且與x軸不重合的直線l與橢圓交于M,N不同的兩點.

(Ⅰ)求橢圓P的方程;

(Ⅱ)當(dāng)AM與MN垂直時,求AM的長;

(Ⅲ)若過點P且平行于AM的直線交直線于點Q,求證:直線NQ恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,其中.點的焦點的右側(cè),且的準(zhǔn)線的距離是距離的3倍.經(jīng)過點的直線與拋物線交于不同的兩點,直線與直線交于點,經(jīng)過點且與直線垂直的直線軸于點.

(1)求拋物線的方程和的坐標(biāo);

(2)判斷直線與直線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是空氣質(zhì)量的一個重要指標(biāo),我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標(biāo).如圖是某地日到日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是(

A.日到日,日均值逐漸降低

B.天的日均值的中位數(shù)是

C.天中日均值的平均數(shù)是

D.從這天的日均監(jiān)測數(shù)據(jù)中隨機抽出一天的數(shù)據(jù),空氣質(zhì)量為一級的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案