11.計算下列各式的值:
(1)${9^{\frac{1}{2}}}+{(\frac{3}{5})^0}+{8^{\frac{1}{3}}}$;             
(2)${log_5}25+lg100+ln\sqrt{e}+{2^{{{log}_2}3}}$.

分析 (1)利用指數(shù)冪的運算法則即可得出;
(2)利用對數(shù)的運算法則即可得出.

解答 解:(1)原式=3+1+${2}^{3×\frac{1}{3}}$=6.
(2)原式=2+2+$\frac{1}{2}$+3=$\frac{15}{2}$.

點評 本題考查了指數(shù)冪與對數(shù)的運算法則,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,a=c且滿足cosC+(cosA-$\sqrt{3}$sinA)cosB=0,則△ABC是(  )
A.鈍角三角形B.等邊三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍;
(3)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2f(x),求k∈N+在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點為F1,F(xiàn)2,離心率為$\frac{\sqrt{3}}{3}$,P是橢圓C上一點,PF1與y軸的交點為M,O為坐標原點,若|PF1|-|PF2|=$\frac{2}{3}$a,則|OM|:|PF2|=1:2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=\sqrt{x+3}+\sqrt{4-x}$的定義域為集合A,g(x)=lg(5-x)+lg(x+1)的定義域為集合B.設全集U=R,求A∩B及(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知角α的終邊經(jīng)過點$(-1,\sqrt{3})$,則對函數(shù)f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)的表述正確的是( 。
A.對稱中心為($\frac{11}{12}π$,0)
B.函數(shù)y=sin2x向左平移$\frac{π}{3}$個單位可得到f(x)
C.f(x)在區(qū)間$(-\frac{π}{3},\frac{π}{6})$上遞增
D.方程f(x)=0在$[{-\frac{5}{6}π,0}]$上有三個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若$y={log_{3{a^2}-1}}x$在(0,+∞)內(nèi)為增函數(shù),且y=a-x也為增函數(shù),則a的取值范圍是( 。
A.$(\frac{{\sqrt{3}}}{3},\;\;1)$B.$(0,\;\;\frac{1}{3})$C.$(\frac{{\sqrt{3}}}{3},\;\;\frac{{\sqrt{6}}}{3})$D.$(\frac{{\sqrt{6}}}{3},1\;\;)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.過橢圓一個焦點F的直線與橢圓交于兩點P、Q,A1、A2為橢圓長軸上的頂點,A1P和A2Q交于點M,A2P和A1Q交于點N,則MF⊥NF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)f(x)=$lo{g}_{{2}_{\;}}$(-x2+2x+3)的單調(diào)遞增區(qū)間是(-1,1).

查看答案和解析>>

同步練習冊答案