A. | 對(duì)稱中心為($\frac{11}{12}π$,0) | |
B. | 函數(shù)y=sin2x向左平移$\frac{π}{3}$個(gè)單位可得到f(x) | |
C. | f(x)在區(qū)間$(-\frac{π}{3},\frac{π}{6})$上遞增 | |
D. | 方程f(x)=0在$[{-\frac{5}{6}π,0}]$上有三個(gè)零點(diǎn) |
分析 由題意,sinα=$\frac{\sqrt{3}}{2}$,cosα=-$\frac{1}{2}$,化簡(jiǎn)函數(shù),再進(jìn)行判斷即可.
解答 解:由題意,sinα=$\frac{\sqrt{3}}{2}$,cosα=-$\frac{1}{2}$,
∴f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)=$\frac{\sqrt{3}}{2}$cos2x-$\frac{1}{2}$sin2x═sin(2x+$\frac{2π}{3}$)=sin[2(x+$\frac{π}{3}$)],
對(duì)稱中心為($\frac{kπ}{2}-\frac{π}{3}$,0),故A不正確;
函數(shù)y=sin2x向左平移$\frac{π}{3}$個(gè)單位可得到f(x),正確;
由-$\frac{π}{2}$+2kπ≤2x+$\frac{2π}{3}$≤$\frac{π}{2}$+2kπ(k∈Z),可得C不正確;
方程f(x)=0在$[{-\frac{5}{6}π,0}]$上的根為-$\frac{5π}{6}$,-$\frac{π}{3}$,故不正確,
故選:B.
點(diǎn)評(píng) 本題考查三角函數(shù)的定義,考查三角函數(shù)的圖象與性質(zhì),考查學(xué)生分析解決問題的能力,正確化簡(jiǎn)函數(shù)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 4 | C. | -4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=x-1 | C. | $y={x^{-\frac{2}{3}}}$ | D. | y=x${\;}^{\frac{1}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com