6.當(dāng)φ=$\frac{π}{2}$,$\frac{3π}{2}$時(shí),求出漸開線$\left\{\begin{array}{l}{x=cosφ+φsinφ}\\{y=sinφ-φcosφ}\end{array}\right.$上的對(duì)應(yīng)點(diǎn)A,B,并求出點(diǎn)A,B間的距離.

分析 將φ=$\frac{π}{2}$,φ=$\frac{3π}{2}$分別代入漸開線方程得出A,B的坐標(biāo),利用兩點(diǎn)間的距離公式計(jì)算.

解答 解:當(dāng)φ=$\frac{π}{2}$時(shí),x=cos$\frac{π}{2}$+$\frac{π}{2}$sin$\frac{π}{2}$=$\frac{π}{2}$,y=sin$\frac{π}{2}$-$\frac{π}{2}$cos$\frac{π}{2}$=1.
當(dāng)φ=$\frac{3π}{2}$時(shí),x=cos$\frac{3π}{2}$+$\frac{3π}{2}$sin$\frac{3π}{2}$=-$\frac{3π}{2}$,y=sin$\frac{3π}{2}$-$\frac{3π}{2}$cos$\frac{3π}{2}$=-1.
∴A($\frac{π}{2}$,1),B(-$\frac{3π}{2}$,-1).
∴|AB|=$\sqrt{4{π}^{2}+4}$=2$\sqrt{{π}^{2}+1}$.

點(diǎn)評(píng) 本題考查了兩點(diǎn)間的距離公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,左、右頂點(diǎn)為A,B過F作x軸的垂線與雙曲線交于C,D兩點(diǎn),若AC⊥BD,則該雙曲線的離心率等于( 。
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線以銳角△ABC的頂點(diǎn)B,C為焦點(diǎn),且經(jīng)過點(diǎn)A,若△ABC內(nèi)角的對(duì)邊分別為a、b、c,且a=2,b=3,$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,則此雙曲線的離心率為( 。
A.$\frac{3+\sqrt{7}}{2}$B.$\frac{3-\sqrt{7}}{2}$C.3-$\sqrt{7}$D.3+$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)的離心率為$\sqrt{3}$,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±$\sqrt{2}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),且${a_1}=\frac{1}{2},{a_4}^2=4{a_2}•{a_8}$,若$\frac{1}{b_n}={log_2}{a_1}+{log_2}{a_2}+…+{log_2}{a_n}$,則數(shù)列{bn}的前10項(xiàng)和為( 。
A.$-\frac{20}{11}$B.$\frac{20}{11}$C.$-\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將甲乙等5名交警分配到三個(gè)不同的路口疏通交通,每個(gè)路口至少一人,且甲乙在同一路口的分配方案有36種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosα}\\{y=sinα}\end{array}\right.$ (α為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(I)求曲線C與直線l在該直角坐標(biāo)系下的普通方程;
(Ⅱ)動(dòng)點(diǎn)A在曲線C上,動(dòng)點(diǎn)B在直線l上,定點(diǎn)P(-1,1),求|PB|+|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以直線y=±$\sqrt{3}$x為漸近線的雙曲線的離心率為( 。
A.2B.$\frac{2\sqrt{3}}{3}$C.2或$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.有6人入住某家庭旅館的6個(gè)不同房間,其中的一樓有兩個(gè)房間,二樓有兩個(gè)房間,三樓有兩個(gè)房間,若每人隨機(jī)地入住這6個(gè)房間中的一個(gè)房間,則其中的甲乙兩人恰好在同一樓層的兩個(gè)房間的概率為( 。
A.$\frac{5}{12}$B.$\frac{1}{5}$C.$\frac{3}{8}$D.$\frac{11}{24}$

查看答案和解析>>

同步練習(xí)冊(cè)答案