6.當φ=$\frac{π}{2}$,$\frac{3π}{2}$時,求出漸開線$\left\{\begin{array}{l}{x=cosφ+φsinφ}\\{y=sinφ-φcosφ}\end{array}\right.$上的對應(yīng)點A,B,并求出點A,B間的距離.

分析 將φ=$\frac{π}{2}$,φ=$\frac{3π}{2}$分別代入漸開線方程得出A,B的坐標,利用兩點間的距離公式計算.

解答 解:當φ=$\frac{π}{2}$時,x=cos$\frac{π}{2}$+$\frac{π}{2}$sin$\frac{π}{2}$=$\frac{π}{2}$,y=sin$\frac{π}{2}$-$\frac{π}{2}$cos$\frac{π}{2}$=1.
當φ=$\frac{3π}{2}$時,x=cos$\frac{3π}{2}$+$\frac{3π}{2}$sin$\frac{3π}{2}$=-$\frac{3π}{2}$,y=sin$\frac{3π}{2}$-$\frac{3π}{2}$cos$\frac{3π}{2}$=-1.
∴A($\frac{π}{2}$,1),B(-$\frac{3π}{2}$,-1).
∴|AB|=$\sqrt{4{π}^{2}+4}$=2$\sqrt{{π}^{2}+1}$.

點評 本題考查了兩點間的距離公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖所示,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,左、右頂點為A,B過F作x軸的垂線與雙曲線交于C,D兩點,若AC⊥BD,則該雙曲線的離心率等于(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線以銳角△ABC的頂點B,C為焦點,且經(jīng)過點A,若△ABC內(nèi)角的對邊分別為a、b、c,且a=2,b=3,$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,則此雙曲線的離心率為(  )
A.$\frac{3+\sqrt{7}}{2}$B.$\frac{3-\sqrt{7}}{2}$C.3-$\sqrt{7}$D.3+$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)的離心率為$\sqrt{3}$,則該雙曲線的漸近線方程為( 。
A.y=±2xB.y=±$\sqrt{2}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)等比數(shù)列{an}的各項均為正數(shù),且${a_1}=\frac{1}{2},{a_4}^2=4{a_2}•{a_8}$,若$\frac{1}{b_n}={log_2}{a_1}+{log_2}{a_2}+…+{log_2}{a_n}$,則數(shù)列{bn}的前10項和為( 。
A.$-\frac{20}{11}$B.$\frac{20}{11}$C.$-\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.將甲乙等5名交警分配到三個不同的路口疏通交通,每個路口至少一人,且甲乙在同一路口的分配方案有36種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosα}\\{y=sinα}\end{array}\right.$ (α為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(I)求曲線C與直線l在該直角坐標系下的普通方程;
(Ⅱ)動點A在曲線C上,動點B在直線l上,定點P(-1,1),求|PB|+|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.以直線y=±$\sqrt{3}$x為漸近線的雙曲線的離心率為( 。
A.2B.$\frac{2\sqrt{3}}{3}$C.2或$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.有6人入住某家庭旅館的6個不同房間,其中的一樓有兩個房間,二樓有兩個房間,三樓有兩個房間,若每人隨機地入住這6個房間中的一個房間,則其中的甲乙兩人恰好在同一樓層的兩個房間的概率為( 。
A.$\frac{5}{12}$B.$\frac{1}{5}$C.$\frac{3}{8}$D.$\frac{11}{24}$

查看答案和解析>>

同步練習冊答案