13.在橢圓x2+8y2=8上求一點(diǎn)P,使P到直線l:x-y+4=0的距離最小,則P的坐標(biāo)為(-$\frac{8}{3}$,$\frac{1}{3}$).

分析 設(shè)直線x-y+m=0與橢圓相切于點(diǎn)P(x0,y0),與橢圓方程聯(lián)立9x2+16mx+8m2-8=0,令△=0,解得m,再利用點(diǎn)到直線的距離公式即可.

解答 解:設(shè)直線x-y+m=0與橢圓相切于點(diǎn)P(x0,y0),
聯(lián)立$\left\{\begin{array}{l}{{x}^{2}+8{y}^{2}=8}\\{x-y+m=0}\end{array}\right.$,化為9x2+16mx+8m2-8=0,
令△=(16m)2-36(8m2-8)=0,解得m=±3,
由圖可知,m=3時(shí)直線l:x-y+4=0與直線x-y+m=0的距離最小.
解得x=-$\frac{8}{3}$,y=$\frac{1}{3}$.
∴P(-$\frac{8}{3}$,$\frac{1}{3}$).
點(diǎn)P到直線l:x-y+4=0的距離d=$\frac{|-\frac{8}{3}-\frac{1}{3}+4|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
∴要求的P到直線l:x-y+4=0的距離最小,其最小值為$\frac{\sqrt{2}}{2}$.
故答案為:(-$\frac{8}{3}$,$\frac{1}{3}$).

點(diǎn)評(píng) 本題考查了直線與橢圓相切問(wèn)題、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在△ABC中,AB=AC=1,∠BAC=120°.
(Ⅰ)求$\overrightarrow{AB}$•$\overrightarrow{BC}$的值;
(Ⅱ)設(shè)點(diǎn)P在以A為圓心,AB為半徑的圓弧BC上運(yùn)動(dòng),且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,其中x,y∈R.求xy的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將三個(gè)半徑為3的球兩兩相切地放在水平桌面上,若在這三個(gè)球的上方放置一個(gè)半徑為1的小球,使得這四個(gè)球兩兩相切,則該小球的球心到桌面的距離為( 。
A.3$\sqrt{3}$B.2$\sqrt{3}$C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,A=$\frac{3π}{4}$,AB=6,AC=3$\sqrt{2}$.
(1)求sin(B+$\frac{π}{4}$)的值;
(2)若點(diǎn)D在BC邊上,AD=BD,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=log2(4x+1)+kx是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=f(x)-x,求函數(shù)g(x)在區(qū)間[-2,1]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+an+1=$\frac{1}{{2}^{n}}$(n=1,2,3,…),則S2n+1=(  )
A.$\frac{4}{3}$(1-$\frac{1}{{4}^{n}}$)B.$\frac{4}{3}$(1-$\frac{1}{{4}^{n+1}}$)C.$\frac{4}{3}$(1+$\frac{1}{{4}^{n}}$)D.$\frac{4}{3}$(1+$\frac{1}{{4}^{n+1}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)在(0,+∞)為增函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=x2-xC.y=|lnx|D.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)曲線C:x2+y2+2=2$\sqrt{3}$(|x|+|y|),則曲線C所圍封閉圖形的面積為$\frac{32π}{3}$+8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線y=kx+b與橢圓$\frac{{x}^{2}}{4}$+y2=1交于A,B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn))
(1)求橢圓的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案