A. | f(x)=sin($\frac{1}{6}$x+$\frac{π}{3}$) | B. | f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$) | C. | f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$) | D. | f(x)=sin($\frac{π}{2}$x+$\frac{π}{6}$) |
分析 利用二次函數(shù)求出A,B兩點(diǎn)的坐標(biāo),根據(jù)正弦函數(shù)的性質(zhì)得出f(x)的周期,代入特殊點(diǎn)B的坐標(biāo)即可求出φ.
解答 解:把y=0代入二次函數(shù)y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1得x=1或x=-$\frac{2}{3}$.
由圖象可知x1<0,∴A(-$\frac{2}{3}$,0).
把y=1代入二次函數(shù)y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1得x=0或x=$\frac{1}{3}$.
由圖象可得x2>0,∴B($\frac{1}{3}$,1).
∴f(x)的周期T=$\frac{2π}{ω}=4×(\frac{1}{3}+\frac{2}{3})$=4,解得ω=$\frac{π}{2}$.
把B($\frac{1}{3}$,1)代入f(x)得sin($\frac{π}{6}$+φ)=1,∴$\frac{π}{6}+$φ=$\frac{π}{2}+$2kπ,
∴φ=$\frac{π}{3}$+2kπ,k∈Z.∵|φ|$<\frac{π}{2}$,∴φ=$\frac{π}{3}$.
∴f(x)=sin($\frac{π}{2}x+\frac{π}{3}$).
故選:C.
點(diǎn)評(píng) 本題考查了y=Asin(ωx+φ)的函數(shù)圖象與性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}$+$\overrightarrow{BA}$=0 | B. | $\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$ | C. | ($\overrightarrow{a}•\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow•\overrightarrow{c}$) | D. | ($\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow•\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b>0,則$\frac{a}$>$\frac{b+1}{a+1}$ | B. | 若a>b>0,則lg$\frac{a+b}{2}$<$\frac{lga+lgb}{2}$ | ||
C. | 若a>b>0,則a+$\frac{1}$>b+$\frac{1}{a}$ | D. | 若a>b>0,則$\sqrt{a}-\sqrt$>$\sqrt{a-b}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com