5.圓x2+y2-2x-2y+1=0上的點(diǎn)到直線x-y=2的距離的最大值是$\sqrt{2}$+1.

分析 把圓的方程化為標(biāo)準(zhǔn)方程后,找出圓心坐標(biāo)和半徑r,利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,求出d+r即為所求的距離最大值.

解答 解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x-1)2+(y-1)2=1,
所以圓心坐標(biāo)為(1,1),圓的半徑r=1,
所以圓心到直線x-y=2的距離d=$\frac{|1-1-2|}{\sqrt{2}}$=$\sqrt{2}$,
則圓上的點(diǎn)到直線x-y=2的距離最大值為d+r=$\sqrt{2}$+1.
故答案為:$\sqrt{2}$+1

點(diǎn)評 本題主要考查直線與圓的位置關(guān)系,當(dāng)考查圓上的點(diǎn)到直線的距離問題,基本思路是:先求出圓心到直線的距離,最大值時(shí),再加上半徑,最小值時(shí),再減去半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知正方形ABCD的邊長為1,點(diǎn)E,F(xiàn)分別為BC、CD的中點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{BD}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象與二次函數(shù)y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1的圖象交于A(x1,0)和B(x2,1),則f(x)的解析式為( 。
A.f(x)=sin($\frac{1}{6}$x+$\frac{π}{3}$)B.f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$)C.f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$)D.f(x)=sin($\frac{π}{2}$x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在正四面體ABCD中,E是BC邊的中點(diǎn),則AE與BD所成角的余弦值為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若Sn為數(shù)列{an}的前n項(xiàng)和,且a1=1,Sn=$\frac{1}{2}$anan+1,an≠0,若數(shù)列{$\frac{1}{2{S}_{n}}$}的前n項(xiàng)和Tn=$\frac{2016}{2017}$,則n的值為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列(n∈N*),且a1=1,b1=3,已知a2+b3=30,a3+b2=14.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=(an+1)•bn,Tn=c1+c2+…+cn,(n∈N*),求證:Tn=$\frac{3}{2}$(anbn+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=60°,PA=PD,M為CD的中點(diǎn),BD⊥PM.
(1)求證:平面PAD⊥平面ABCD;
(2)若∠APD=90°,四棱錐P-ABCD的體積為$\frac{{2\sqrt{3}}}{3}$,求三棱錐A-PBM的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=loga(1-x),g(x)=loga(1+x)(a>0且a≠1).
(1)設(shè)a=10,F(xiàn)(x)=f(x)-g(x),若函數(shù)h(x)=F(x)-x一m在[0,$\frac{9}{11}$]上恒有零點(diǎn),求實(shí)數(shù)m的取值范圍:
(2)若關(guān)下x的方程${a}^{g(-{x}^{2}+x+1)}$=af(m)-x有兩個(gè)不等實(shí)很,求實(shí)數(shù)m的范圍:
(3)若a>1且在x∈[0,1]時(shí),f(m-2x)>$\frac{1}{2}$g(x)恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合M={x|x2-x-6<0},N={x|x-1>0},則M∩N=( 。
A.(1,2)B.(1,3)C.(-1,2)D.(-1,3)

查看答案和解析>>

同步練習(xí)冊答案