4.下列等式恒成立的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$C.($\overrightarrow{a}•\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow•\overrightarrow{c}$)D.($\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow{c}$=$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow•\overrightarrow{c}$

分析 根據(jù)平面向量的線性運(yùn)算的幾何意義和數(shù)量級(jí)的運(yùn)算性質(zhì)分析判斷.

解答 解:對(duì)于A,∵$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{0}$,故A錯(cuò)誤.
對(duì)于B,$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}$,故B錯(cuò)誤.
對(duì)于C,($\overrightarrow{a}•\overrightarrow$)$•\overrightarrow{c}$表示與$\overrightarrow{c}$共線的向量,而$\overrightarrow{a}•(\overrightarrow•\overrightarrow{c})$表示與$\overrightarrow{a}$共線的向量,故C錯(cuò)誤.
對(duì)于D,根據(jù)平面向量數(shù)量級(jí)的運(yùn)算性質(zhì)可知D正確.
故選D.

點(diǎn)評(píng) 本題考查了平面向量線性運(yùn)算的幾何意義,數(shù)量級(jí)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若a1=3,a2=6,且an+2=an+1-an,則a2016等于-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.給出下列4個(gè)命題,其中正確的個(gè)數(shù)是( 。
①若“命題p∧q為真”,則“命題p∨q為真”;
②命題“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”;
②“tanx>0”是“sin2x>0”的充要條件;
④計(jì)算:9192除以100的余數(shù)是1.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在擲均勻硬幣的試驗(yàn)中,以下對(duì)“大數(shù)定理”的理解錯(cuò)誤的是( 。
A.大量的試驗(yàn)中,出現(xiàn)正面的頻率穩(wěn)定于$\frac{1}{2}$
B.不管試驗(yàn)多少次,出現(xiàn)正面的概率始終為$\frac{1}{2}$
C.試驗(yàn)次數(shù)增多,出現(xiàn)正面的經(jīng)驗(yàn)概率越接近$\frac{1}{2}$
D.試驗(yàn)次數(shù)無(wú)限增大時(shí),出現(xiàn)正面的頻率的極限為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知|$\overrightarrow{a}$|=8,|$\overrightarrow$|=6,則<$\overrightarrow{a}$,$\overrightarrow$>=150°,則$\overrightarrow{a}$$•\overrightarrow$=( 。
A.-24B.24C.-24$\sqrt{3}$D.24$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象與二次函數(shù)y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1的圖象交于A(x1,0)和B(x2,1),則f(x)的解析式為( 。
A.f(x)=sin($\frac{1}{6}$x+$\frac{π}{3}$)B.f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$)C.f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$)D.f(x)=sin($\frac{π}{2}$x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點(diǎn).
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點(diǎn),∠CA1D=45°且AB=2,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若Sn為數(shù)列{an}的前n項(xiàng)和,且a1=1,Sn=$\frac{1}{2}$anan+1,an≠0,若數(shù)列{$\frac{1}{2{S}_{n}}$}的前n項(xiàng)和Tn=$\frac{2016}{2017}$,則n的值為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l1:2x-y+1=0,直線l2:ax-by+1=0
(1)若先后拋擲一枚質(zhì)地均勻的骰子,骰子向上的數(shù)字依次記為(a,b),求“l(fā)1∥l2”的概率;
(2)若a,b為實(shí)數(shù),且a∈(2,5),b∈(1,2),求直線l1與l2的交點(diǎn)在第一象限的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案