17.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x},x∈[-1,2]}\\{8-2x,x∈(2,4]}\end{array}}\right.$,則f(-log2$\sqrt{3}$)=$\frac{\sqrt{3}}{3}$,若f(t)∈[0,1],則實(shí)數(shù)t的取值范圍是[-1,0]∪[$\frac{7}{2}$,4].

分析 根據(jù)x的范圍,代入f(x)=2x,求出函數(shù)值即可,根據(jù)f(t)的范圍,得到0≤2x≤1或0≤8-2x≤1,解出即可.

解答 解:∵函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x},x∈[-1,2]}\\{8-2x,x∈(2,4]}\end{array}}\right.$,
∴f(-log2$\sqrt{3}$)=${2}^{{-log}_{2}^{\sqrt{3}}}$=$\frac{\sqrt{3}}{3}$,
若f(t)∈[0,1],
則0≤2x≤1,或0≤8-2x≤1,
解得:-1≤x≤0或$\frac{7}{2}$≤x≤4,
故答案為:[-1,0]∪[$\frac{7}{2}$,4].

點(diǎn)評(píng) 本題考查了求函數(shù)值問題,考查對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x,y滿足$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤8}\end{array}\right.$時(shí),z=x-y的最大值為( 。
A.4B.-4C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U={2,4,6,8,10},集合A={2},B={8,10},則∁U(A∪B)=( 。
A.{4,6}B.{4}C.{6}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,復(fù)數(shù)$\frac{a-i}{1+i}$(a∈R)在平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線方程x-y+1=0上,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f′(x),f′(x)在區(qū)間(a,b)的導(dǎo)函數(shù)為f″(x).若在區(qū)間(a,b)上f″(x)恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”.已知f(x)=$\frac{1}{12}$x4-$\frac{1}{3}$x3-$\frac{3}{2}$x2.若函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1>0且$\frac{a_6}{a_5}=\frac{9}{11}$,當(dāng)Sn取最大值時(shí),n的值為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a∈R,“關(guān)于x的不等式x2-2ax+a≥0的解集為R”是“0≤a≤1”(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)集R,
(1)若函數(shù)f(x)=2xsin(πx),證明f(x+2)=4f(x);
(2)若f(x+T)=kf(x)(k>0,T>0),若f(x)=axφ(x)(其中a為正的常數(shù)),試證明函數(shù)φ(x)是以T為周期的周期函數(shù);
(3)若f(x+6)=$\sqrt{2}$f(x),且當(dāng)x∈[-3,3]時(shí),f(x)=$\frac{1}{10}$x(x2-9),記Sn=f(2)+f(6)+f(10)+…+f(4n-2)n∈N*,求使得S1、S2、S3…Sn小于1000都成立的最大整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=mx+$\sqrt{x}$在區(qū)間[$\frac{1}{2}$,1]上單調(diào)遞增,則( 。
A.[-$\frac{1}{2}$,+∞)B.[$\frac{1}{2}$,+∞)C.[-2,+∞)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案