試證明函數(shù)f(x)=x2+1在(-∞,0)上是減函數(shù).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)f(x)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)在區(qū)間(-∞,0)上是負(fù),判斷函數(shù)f(x)是減函數(shù).
解答: 證明:f′(x)=2x,當(dāng)x∈(-∞,0)時(shí),f′(x)=2x<0,
∴f(x)在(-∞,0)上是減函數(shù).
點(diǎn)評(píng):這是一道利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的應(yīng)用題.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cos(π-α)=-
1
3
,α∈[-
π
2
,0],則tanα=( 。
A、-
2
4
B、
2
4
C、-2
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m2-2cosx•m-sin2x在cosx=-1時(shí)取得最大值,在cosx=m時(shí)取得最小值,則實(shí)數(shù)m的取值范圍為( 。
A、m≤-1B、m≥1
C、0≤m≤1D、-1≤m≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
i3
1-i
等于(  )
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、-
1
2
+
1
2
i
D、-
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
px-p
-lnx(p>0).
(Ⅰ)若函數(shù)f(x)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)p的取值范圍;
(Ⅱ)當(dāng)n∈N*時(shí),試判斷
n
k=1
2k+1
k
與2ln(n+1)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)w=-
1
2
+
3
2
i,
(1)計(jì)算:1+w+w2; 
(2)計(jì)算:(1+w-w2)(1-w+w2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,1),
b
=(4,x),
c
=(y,2),
d
=(8,6),且
b
d
,(4
a
+
d
)⊥
c

(1)求
b
c
;
(2)求
c
a
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040506070
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖.
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+a.
(3)經(jīng)計(jì)算,相關(guān)指數(shù)R2=0.98,你可得到什么結(jié)論?(參考數(shù)值:2×30+4×40+5×50+6×60+8×70=1390)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
(4a
2
3
b-1)
1
2
a-
1
2
b
1
3
6ab5
;
(2)log32•log43+2log23+ln
e
+lg2+lg5.

查看答案和解析>>

同步練習(xí)冊(cè)答案