分析 利用兩角和的正切將tan(α+β)=9tanβ轉(zhuǎn)化,整理為關(guān)于tanβ的一元二次方程,利用題意,結(jié)合韋達(dá)定理即可求得答案.
解答 解:∵tan(α+β)=9tanβ,
∴$\frac{tanα+tanβ}{1-tanαtanβ}$=9tanβ,
∴9tanαtan2β-8tanβ+tanα=0,①
∴α,β∈(0,$\frac{π}{2}$),
∴方程①有兩正根,tanα>0,
∴△=64-36tan2α≥0,
∴0<tanα≤$\frac{4}{3}$.
∴tanα的最大值是$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.
點評 本題考查兩角和與差的正切函數(shù),考查一元二次方程中韋達(dá)定理的應(yīng)用,考查轉(zhuǎn)化思想與方程思想,也可以先求得tanα,再利用基本不等式予以解決,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$ | B. | $({\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$ | C. | $({-\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$ | D. | $({-\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 7 | C. | 9 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | 2 | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com