函數(shù)f(x)=
π
2
x+log2x的零點(diǎn)所在區(qū)間為( 。
A、[0,
1
4
]
B、[
1
4
,
1
2
]
C、[
1
2
3
4
]
D、[
3
4
,1]
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的零點(diǎn)存在性定理,把題目中所給的四個(gè)選項(xiàng)中出現(xiàn)在端點(diǎn)的數(shù)字都代入函數(shù)的解析式中,得到函數(shù)值,把區(qū)間兩個(gè)端點(diǎn)對(duì)應(yīng)的函數(shù)值符合相反的找出了,得到結(jié)果.
解答: 解:∵f(
1
4
)=
π
8
-2<0,
f(
1
2
)=
π
4
+
log
1
2
2
=
π
4
-1<0,
f(
3
4
)=
8
+
log
3
2
-2>
8
-1>0,
∴f(
1
2
)f(
3
4
)<0,
故選:C.
點(diǎn)評(píng):本題考查函數(shù)零點(diǎn)的存在性判定定理,考查基本初等函數(shù)的函數(shù)值的求法,是一個(gè)基礎(chǔ)題,這是一個(gè)新加內(nèi)容,這種題目可以出現(xiàn)在高考題目中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校共有30至50歲之間的(包括30與不包括50)數(shù)學(xué)教師15人,其年齡分布莖葉圖如圖所示,從中選取3人參加支教.
(Ⅰ)若教師年齡分布的極差為15,求教師的平均年齡;
(Ⅱ)若選出的3人中有2名男教師1名女教師,將他們分配到兩所學(xué)校,每校至少有一人,則2名男教師分在同一所學(xué)校的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
x2+1
,求函數(shù)的定義域、值域,并判斷奇偶性和單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知
a
=(1,0),
b
=(1,1),λ為何值時(shí),
a
b
a
垂直;
(2)已知|
a
|=4,|
b
|=2,
a
b
的夾角為1200,求(
a
+2
b
)•(
a
-3
b
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2的圖象上一點(diǎn)(1,1)及鄰近一點(diǎn)(1+△x,1+△y),則
△y
△x
等于( 。
A、2
B、2+△x
C、2+2△x
D、2△x+(△x)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[-1,1]上的函數(shù)y=f﹙x﹚的值域?yàn)閇-2,0],則函數(shù)f﹙2x+1﹚的值域?yàn)?div id="0tuvf5s" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過任意四邊形內(nèi)任意一點(diǎn),將四邊形分成面積相等的兩部分,請(qǐng)作圖說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=2∠A,cos∠A=
3
4
BA
BC
=
27
2
.求
(1)cos∠B的值;
(2)邊AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差大于零的等差數(shù)列,數(shù)列{bn}為等比數(shù)列,且a1=1,b1=2,b2-a2=1,a3+b3=13
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式
(Ⅱ)設(shè)cn=anbn,求數(shù)列{cn}前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案