某四面體的三視圖如圖所示,則該四面體的四個面中,直角三角形的面積和是( )

A. B. C. D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.利用導(dǎo)數(shù)的定義求函數(shù)f(x)=-x2+3x在x=2處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知在等比數(shù)列{an}中,a1+a2+a3=6,a1+a3+a5=10.5,則公比q( 。
A.-$\frac{1}{2}$或$\frac{3}{2}$B.$\frac{1}{2}$或-$\frac{3}{2}$C.1或-3D.-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|lgx|,
(1)判斷f($\frac{1}{4}$)、f($\frac{1}{3}$)、f(2)的大小關(guān)系;
(2)若0<a<b,且f(a)>f(b),試比較ab與1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠三中高二上學(xué)期第一次月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

與圓的位置關(guān)系為( )

A.內(nèi)切 B.相交 C.外切 D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱錐P-ABC中,側(cè)面PAC⊥底面ABC,AP⊥PB,且AB=2$\sqrt{2}$,AC=BC=2,E為PB邊的中點.
(Ⅰ)求證:AP⊥PC;
(Ⅱ)若PC=1,求三棱錐A-PEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線C的漸近線方程為y=±x,一條準線方程為$x=\frac{{\sqrt{2}}}{2}$.
(1)求雙曲線C的方程;
(2)設(shè)過點M(-2,0)的直線l交雙曲線C于A、B兩點,并且三角形OAB的面積為2$\sqrt{3}$,求直線l的方程;
(3)在(2)中是否存在這樣的直線l,使OA⊥OB?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,過點F作x軸的垂線交雙曲線的右支于C,D兩點,與雙曲線的漸近線交于點P,點C和點P在第-象限,點D在第四象限,若|PC|=|CD|,則該雙曲線的離心率為( 。
A.$\frac{3\sqrt{2}}{2}$B.$\frac{3\sqrt{5}}{5}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.二項式${(ax-\frac{{\sqrt{3}}}{6})^3}$(a>0)的展開式的第二項的系數(shù)為-$\frac{{\sqrt{3}}}{2}$,則$\int_{-2}^a{x^2}$dx的值為( 。
A.3或$\frac{7}{3}$B.$\frac{7}{3}$C.3D.3或$-\frac{10}{3}$

查看答案和解析>>

同步練習(xí)冊答案