1.已知函數(shù)f(x)和g(x)是兩個定義在區(qū)間M上的函數(shù),若對任意的x∈M,存在常數(shù)x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則稱函數(shù)f(x)和g(x)在區(qū)間M上是“相似函數(shù)”,若f(x)=|log2(x-1)|+b與g(x)=x3-3x2+8在[$\frac{5}{4}$,3]上是“相似函數(shù)”,則函數(shù)f(x)在區(qū)間[$\frac{5}{4}$,3]上的最大值為(  )
A.4B.5C.6D.$\frac{9}{2}$

分析 由對數(shù)函數(shù)的性質(zhì)可得f(x)的值域,再由導(dǎo)數(shù)求得g(x)的值域,根據(jù)新定義,可得b=4,即可得到所求的最大值.

解答 解:f(x)=|log2(x-1)|+b在區(qū)間[$\frac{5}{4}$,3]上的值域為[b,b+2],
g(x)=x3-3x2+8的導(dǎo)數(shù)為g′(x)=3x2-6x,g′(x)=0解得x=2,
由g(2)=4,g($\frac{5}{4}$)=$\frac{337}{64}$,g(3)=8,即有g(shù)(x)的值域為[4,8],
由“相似函數(shù)”可得f(2)=g(2),即b=4,
則函數(shù)f(x)在區(qū)間[$\frac{5}{4}$,3]上的最大值為b+2=6,
故選:C.

點評 本題考查新定義的理解和運用,主要考查對數(shù)函數(shù)的性質(zhì)和導(dǎo)數(shù)的運用:求最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.給出三條直線l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4.
(1)m為何值時,三線共點;
(2)m=0時,三條直線能圍成一個三角形嗎?
(3)求當(dāng)三條直線圍成三角形時,m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,一隧道截面由一個長方形和拋物線構(gòu)成現(xiàn)欲在隨道拋物線拱頂上安裝交通信息采集裝置若位置C對隧道底AB的張角θ最大時采集效果最好,則采集效果最好時位置C到AB的距離是( 。
A.2$\sqrt{2}$mB.2$\sqrt{3}$mC.4 mD.6 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等比數(shù)列{an}中,已知a1=-1,a4=64,求q與S4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求函數(shù)y=sin(2x-$\frac{π}{4}$)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右頂點是雙曲線$\frac{x^2}{3}-{y^2}=1$的頂點,且橢圓的上頂點到雙曲線的漸近線的距離為$\frac{{\sqrt{3}}}{2}$,
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在同時滿足下列兩個條件的直線l:①與雙曲線相交于Q1、Q2兩點,且$\overrightarrow{O{Q_1}}•\overrightarrow{O{Q_2}}=-5$,②與相交于M1、M2兩點,且$|{{M_1}{M_2}}|=\sqrt{10}$.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點分別為,F(xiàn)1和F2,上頂點為B,BF2,延長線交橢圓于點A,△ABF的周長為8,且$\overrightarrow{B{F_1}}•\overrightarrow{BA}$=0.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點P(1,0)的直線l與橢圓C相交于M,N兩點,點T(4,3),記直線TM,TN的斜率分別為k1,k2,當(dāng)k1k2最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知△ABC的三條高是AD,BE,CF,用向量方法證明:AD,BE,CF相交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.化簡(1+2${\;}^{-\frac{1}{16}}$)(1+2${\;}^{-\frac{1}{8}}$)(1+2${\;}^{-\frac{1}{4}}$)(1+2${\;}^{-\frac{1}{2}}$)得到的結(jié)果是(  )
A.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)-1B.(1-2${\;}^{-\frac{1}{16}}$)-1C.1-2${\;}^{-\frac{1}{16}}$D.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)

查看答案和解析>>

同步練習(xí)冊答案