5.如果當(dāng)|x|≤1時(shí),所有滿足|f(x)|≤1的函數(shù)f(x)=ax2+bx+c(a,b,c∈R),都有|ax+b|≤M,則最小的正數(shù)M可取為( 。
A.1B.2C.3D.4

分析 利用當(dāng)|x|≤1時(shí),所有滿足|f(x)|≤1的函數(shù)f(x)=ax2+bx+c(a,b,c∈R),確定|a+b|≤2,|-a+b|≤2,結(jié)合當(dāng)|x|≤1時(shí),|ax+b|≤M,可得最小的正數(shù)M.

解答 解:∵當(dāng)-1≤x≤1時(shí),f(x)滿足-1≤f(x)≤1,
∴當(dāng)x=±1,x=0時(shí),均有-1≤f(x)≤1,
即-1≤a+b+c≤1…①,-1≤c≤1②,-1≤-a+b-c≤1…③,
∴-1-c≤a+b≤1-c,-1+c≤-a+b≤1+c
∴|a+b|≤2,|-a+b|≤2,
∵當(dāng)|x|≤1時(shí),|ax+b|≤M,∴最小的正數(shù)M可取為2,
故選:B.

點(diǎn)評(píng) 本題主要考查了二次函數(shù)與其圖象間的關(guān)系:二次函數(shù)圖象上的每一點(diǎn)都滿足二次函數(shù)的關(guān)系式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元(如圖).
(1)分別寫(xiě)出兩種產(chǎn)品的收益和投資的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎樣分配資金能使投資獲得最大的收益,其最大收益為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.空氣污染,又稱(chēng)為大氣污染,是指由于人類(lèi)活動(dòng)或自然過(guò)程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時(shí)間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來(lái)越關(guān)注環(huán)境保護(hù)問(wèn)題.
當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時(shí),空氣質(zhì)量級(jí)別為一級(jí),空氣質(zhì)量狀況屬于優(yōu);
當(dāng)空氣污染指數(shù)為50~100時(shí),空氣質(zhì)量級(jí)別為二級(jí),空氣質(zhì)量狀況屬于良;
當(dāng)空氣污染指數(shù)為100~150時(shí),空氣質(zhì)量級(jí)別為三級(jí),空氣質(zhì)量狀況屬于輕度污染;
當(dāng)空氣污染指數(shù)為150~200時(shí),空氣質(zhì)量級(jí)別為四級(jí),空氣質(zhì)量狀況屬于中度污染;
當(dāng)空氣污染指數(shù)為200~300時(shí),空氣質(zhì)量級(jí)別為五級(jí),空氣質(zhì)量狀況屬于重度污染;
當(dāng)空氣污染指數(shù)為300以上時(shí),空氣質(zhì)量級(jí)別為六級(jí),空氣質(zhì)量狀況屬于嚴(yán)重污染.
2015年12月某日某省x個(gè)監(jiān)測(cè)點(diǎn)數(shù)據(jù)統(tǒng)計(jì)如下:
空氣污染指數(shù)(單位:μg/m3[0,50](50,100](100,150](150,200]
監(jiān)測(cè)點(diǎn)個(gè)數(shù)1540y10
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(2)若A市共有5個(gè)監(jiān)測(cè)點(diǎn),其中有3個(gè)監(jiān)測(cè)點(diǎn)為輕度污染,2個(gè)監(jiān)測(cè)點(diǎn)為良,從中任意選取2個(gè)監(jiān)測(cè)點(diǎn),事件A“其中至少有一個(gè)為良”發(fā)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知tanα=2,則$\frac{sinα+2cosα}{sinα-cosα}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在等腰梯形ABCD中,$\overrightarrow{AB}$=-2$\overrightarrow{CD}$,M為BC的中點(diǎn),則$\overrightarrow{AM}$=( 。
A.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$B.$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{2}\overrightarrow{AD}$C.$\frac{3}{4}\overrightarrow{AB}$+$\frac{1}{4}\overrightarrow{AD}$D.$\frac{1}{2}\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某中學(xué)隨機(jī)抽取50名高一學(xué)生調(diào)查其每天運(yùn)動(dòng)的時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,運(yùn)動(dòng)
的時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中x的值;
(2)定義運(yùn)動(dòng)的時(shí)間不少于1小時(shí)的學(xué)生稱(chēng)為“熱愛(ài)運(yùn)動(dòng)”,若該校有高一學(xué)生1200人,請(qǐng)估計(jì)有多少學(xué)生“熱愛(ài)運(yùn)動(dòng)”;
(3)設(shè)m,n表示在抽取的50人中某兩位同學(xué)每大運(yùn)動(dòng)的時(shí)間,且已知m,n∈[40,60)∪[80,100],求事件“|m-n|>20”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y-6≤0}\\{2x+y-3≥0}\end{array}\right.$,則3x+y的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若函數(shù)f(x)=$\sqrt{x(2-x)}$的定義域?yàn)閇0,2],則函數(shù)g(x)=$\frac{f(2x)}{x-1}$的定義域?yàn)閇0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知圓C:x2+y2-4x=0與直線y=x+b相交于M,N兩點(diǎn),且滿足CM⊥CN(C為圓心),則實(shí)數(shù)b的值為0或-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案