15.已知圓C:x2+y2-4x=0與直線y=x+b相交于M,N兩點(diǎn),且滿足CM⊥CN(C為圓心),則實(shí)數(shù)b的值為0或-4.

分析 確定圓心與半徑,利用CM⊥CN,可得圓心到直線的距離d=$\frac{\sqrt{2}}{2}$r,即可求實(shí)數(shù)b的值.

解答 解:圓C:x2+y2-4x=0可化為圓(x-2)2+y2=4,圓心坐標(biāo)為(2,0),半徑為2
∵CM⊥CN,
∴圓心到直線的距離d=$\frac{|2+b|}{\sqrt{2}}=\sqrt{2}$
∴b=0或-4.
故答案為:0或-4.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線距離公式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果當(dāng)|x|≤1時(shí),所有滿足|f(x)|≤1的函數(shù)f(x)=ax2+bx+c(a,b,c∈R),都有|ax+b|≤M,則最小的正數(shù)M可取為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知p:0<a<4,q:函數(shù)y=x2-ax+a的值恒為正,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,M,N分別是棱CC1,AB的中點(diǎn).
(1)求證:CN⊥平面ABB1A1;
(2)求證:CN∥平面AMB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.圓x2+y2-2x+4y=0的圓心到直線x-y=0的距離為( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若f(x)=x2-2(a-1)x+2在(-∞,3]上是減函數(shù),則a的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}滿足a1=1,an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1(n≥2,n∈N+),則a2016=1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ln(ax2+2x+1).
(I)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知圓C:(x-1)2+y2=4
(1)求過(guò)點(diǎn)P(3,3)且與圓C相切的直線l的方程;
(2)已知直線m:x-y+1=0與圓C交于A、B兩點(diǎn),求|AB|

查看答案和解析>>

同步練習(xí)冊(cè)答案