A. | 11 | B. | 12 | C. | 21 | D. | 22 |
分析 由$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,它們的前n項和Sn有最大可得a11>0,a11+a12<0,a12<0,從而有a1+a21=2a11>0,a1+a22=a11+a12<0,從而可求滿足條件的n的值.
解答 解:由$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,它們的前n項和Sn有最大值,可得數(shù)列的d<0,
∴a11>0,a11+a12<0,a12<0,
∴a1+a21=2a11>0,a1+a22=a11+a12<0,
使得Sn>0的n的最大值n=21,
故選:C.
點評 本題主要考查了等差數(shù)列的性質(zhì)在求解和的最值中應(yīng)用,解題的關(guān)鍵是靈活利用和公式及等差數(shù)列的性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7 | B. | 1 | C. | 7 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線 | B. | 線段 | C. | 拋物線 | D. | 橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com