20.已知拋物線y2=2px,F(xiàn)為拋物線的焦點,A為拋物線上一點,B(2,-1)為拋物線內(nèi)一點,若|AF|+|AB|≥3,則p的值為6.

分析 由|AF|+|AB|≥3,可得A到定點B(2,-1)與它到準(zhǔn)線的距離之和的最小值等于3,即可求出p的值,

解答 解:由題意,A到定點B(2,-1)與它到準(zhǔn)線的距離之和的最小值等于3,
∴2+$\frac{p}{2}$=5,
∴p=6,
故答案為:6.

點評 本題考查拋物線的定義,考查學(xué)生分析轉(zhuǎn)化問題的能力,正確運用拋物線的定義是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知隨機變量X服從正態(tài)分布N(1,σ2),若P(X≤2)=0.72,則P(X≤0)=( 。
A.0.22B.0.28C.0.36D.0.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列數(shù)列中,是等差數(shù)列的是( 。
A.-1,0,-1,0,…B.1,11,111,1111,…C.1,5,9,13,…D.1,2,4,8,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{a}$=(3,0),$\overrightarrow$=(k,5),且$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{3π}{4}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$,則向量$\vec a$與$\vec b$夾角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{6}$B.-$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC的頂點坐標(biāo)是A(-1,5)、B(-2,-1)、C(4、7),求BC邊上中線所在的直線方程和BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=10,an=$\left\{\begin{array}{l}{{2}^{{a}_{n-1}},n=2k}\\{-1+lo{g}_{2}{a}_{n-1},n=2k+1}\end{array}\right.$(k∈N*),其前n項和為Sn
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=x3-ax2-bx+a2在x=1處有極值10,則a,b的值為( 。
A.$\left\{\begin{array}{l}{a=3}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$B.$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$
C.$\left\{\begin{array}{l}{a=-1}\\{b=5}\end{array}\right.$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率e=$\frac{1}{2}$,點F2到直線y=x的距離為$\frac{\sqrt{2}}{2}$
(Ⅰ)求橢圓C的方程
(Ⅱ)過F2任意作一條直線l交橢圓C于A、B兩點,是否存在以線段AB為直徑的圓經(jīng)過F1,若存在,求出直線l方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案