12.若函數(shù)f(x)的定義域是{x|0<x≤1},求f(cosα)的定義域.

分析 函數(shù)f(x)的定義域是{x|0<x≤1},可得0<cosα≤1,解出即可得出:f(cosα)的定義域.

解答 解:∵函數(shù)f(x)的定義域是{x|0<x≤1},
∴0<cosα≤1,
解得$2kπ-\frac{π}{2}$<α<$\frac{π}{2}$+2kπ,k∈Z.
∴f(cosα)的定義域為($2kπ-\frac{π}{2}$,$\frac{π}{2}$+2kπ),k∈Z.

點評 本題考查了函數(shù)的定義域、三角函數(shù)求值,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若tanα=3tan37°,則$\frac{cos(α-53°)}{sin(α-37°)}$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的前n項和為Sn,滿足Sn=$\frac{2}{3}$an+5,且λan+1≤5Sn-S2n對任意的n∈N*恒成立,則實數(shù)λ的取值范圍[-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標系x0y中,動點A的坐標為(2+$\sqrt{2}$cosα,$\sqrt{2}$sinα-1),其中α∈R.在極坐標系(以原點O為極點,以x軸非負半軸為極軸)中,直線C的方程為ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$a.
(Ⅰ)判斷動點A的軌跡的形狀;
(Ⅱ)若直線C與動點A的軌跡有且僅有一個公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=1+$\frac{a}{{a}^{x}-1}$是奇函數(shù),則a的值是( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,∠BAD=30°,AB=4,AC=2,點D在BC上,且BC=2BD
(1)求BC的長;
(2)求tan(B+60°)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.“a≤-1”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(0,+∞)上單調(diào)遞增”的充分不必要條件.
(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)六邊形ABCDEF為正六邊形,$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{AE}$=$\overrightarrow{n}$,$\overrightarrow{BE}$=$\overrightarrow{n}$-$\overrightarrow{m}$(用$\overrightarrow{m}$,$\overrightarrow{n}$表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標系中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點為F($\sqrt{2}$,0),離心率為$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的標準方程;
(2)過原點的直線與橢圓C交于A,B兩點(A,B不是橢圓C的頂點),點D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M、N兩點,設(shè)直線BD,AM的斜率分別為k1,k2,證明:存在常數(shù)λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

同步練習(xí)冊答案