在不等式組
0≤x≤2
0≤y≤2
所表示的平面區(qū)域內(nèi)任取一點(diǎn)P,則點(diǎn)P的坐標(biāo)(x,y)滿足x-2y≤0的概率為( 。
A、
3
4
B、
2
3
C、
1
2
D、
1
4
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:由已知畫出不等式組求出其對(duì)應(yīng)的面積,即所有基本事件總數(shù)對(duì)應(yīng)的幾何量,再求出滿足x-2y≤0區(qū)域的面積,代入幾何概型計(jì)算公式,即可得到答案.
解答: 解:如圖

滿足不等式組的區(qū)域是邊長為2的正方形的面積為4,滿足不等式x-2y≤0的區(qū)域如圖陰影部分,其面積為4-
1
2
×2×1
=3,
由幾何概型的概率公式得點(diǎn)P的坐標(biāo)(x,y)滿足x-2y≤0的概率為
3
4
;
故選A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是幾何概型,二元一次不等式(組)與平面區(qū)域,求出滿足條件A的基本事件對(duì)應(yīng)的“幾何度量”N(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”N,最后根據(jù)P=
N(A)
N
求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于直線a、b、c,以及平面M、N,給出下列命題:
①若a∥M,b∥M,則a∥b;
②若a∥M,b⊥M,則a⊥b;
③若a∥b,b∥M,則a∥M;
④若a⊥M,a∥N,則M⊥N,
其中正確命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在科普知識(shí)競賽前的培訓(xùn)活動(dòng)中,將甲、乙兩名學(xué)生的6次培訓(xùn)成績(百分制)制成如圖所示的莖葉圖:
(Ⅰ)若從甲、乙兩名學(xué)生中選擇1人參加該知識(shí)競賽,你會(huì)選哪位?請(qǐng)運(yùn)用統(tǒng)計(jì)學(xué)的知識(shí)說明理由;
(Ⅱ)若從學(xué)生甲的6次培訓(xùn)成績中隨機(jī)選擇2個(gè),求選到的分?jǐn)?shù)中至少有一個(gè)大于85分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為m,第二次出現(xiàn)的點(diǎn)數(shù)記為n,則3m≠2n的概率為( 。
A、
2
3
B、
3
4
C、
1
5
D、
17
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程lgx-3logx10=2的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=
3
cosα
y=3sinα
,求曲線c的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年某地春季高考有10所高校招生,如果某3位同學(xué)恰好被其中2所高校錄取,那么錄取方式有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=a-2•t
y=-4•t   
(t為參數(shù)),圓C的參數(shù)方程為
x=4•cosθ
y=4•sinθ
(θ為參數(shù)).若直線l與圓C有公共點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)>0成立,則不等式f(x)>0的解集是( 。
A、(1,+∞)
B、(-1,0)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案