1.證明:函數(shù)f(x)=x+$\frac{4}{x}$(x>0)在區(qū)間(0,2)上單調(diào)遞減,在[2,+∞)上單調(diào)遞增.

分析 可設(shè)任意的x1>x2>0,然后作差,通分,提取公因式,從而可判斷f(x1),f(x2)分別在區(qū)間(0,2)和[2,+∞)上的大小關(guān)系,這樣即證出f(x)的單調(diào)性.

解答 證明:設(shè)x1>x2>0,則:
$f({x}_{1})-f({x}_{2})={x}_{1}+\frac{4}{{x}_{1}}-{x}_{2}-\frac{4}{{x}_{2}}$=$({x}_{1}-{x}_{2})(1-\frac{4}{{x}_{1}{x}_{2}})$;
∵x1>x2
∴x1-x2>0;
∵x1,x2∈(0,2)時(shí),0<x1x2<4,$1-\frac{4}{{x}_{1}{x}_{2}}<0$;
∴f(x1)<f(x2);
∴f(x)在區(qū)間(0,2)上單調(diào)遞減;
同理,x1,x2∈[2,+∞)上時(shí),x1x2>4,$1-\frac{4}{{x}_{1}{x}_{2}}>0$;
∴f(x1)>f(x2),
∴f(x)在[2,+∞)上單調(diào)遞增.

點(diǎn)評(píng) 考查函數(shù)單調(diào)性的定義,以及根據(jù)單調(diào)性定義證明函數(shù)單調(diào)性的方法和過(guò)程,作差的方法比較f(x1),f(x2)的大小關(guān)系,作差后是分式的一般要通分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.某地采用搖號(hào)買(mǎi)車(chē)的方式,共有20萬(wàn)人參加搖號(hào),每個(gè)月有2萬(wàn)個(gè)名額,如果每個(gè)月?lián)u上的退出搖號(hào),沒(méi)有搖上的繼續(xù)進(jìn)行下月?lián)u號(hào),則每個(gè)人搖上號(hào)平均需要5個(gè)月的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若數(shù)列{an}的前n項(xiàng)和Sn=$\frac{2}{3}$an-$\frac{2}{3}$,則數(shù)列{an}的通項(xiàng)公式an等于(  )
A.-2nB.(-2)nC.-4nD.(-4)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知空間四邊形ABCD,E、H分別是AB、AD的點(diǎn),F(xiàn)、G分別是邊BC、DC的點(diǎn)(如圖),且EFGH是矩形,求證:
(1)AC∥面EFGH.
(2)求異面直線AC與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函f(x)=$\left\{\begin{array}{l}{2cos\frac{πx}{3}(x≤2000)}\\{{2}^{x-2008}(x>2000)}\end{array}\right.$ 則f[f(2015)]等于( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)M(x,y)到點(diǎn)F(2,0)的距離與定直線x=$\frac{5}{2}$的距離之比為$\frac{2\sqrt{5}}{5}$,設(shè)點(diǎn)M的軌跡為曲線E
(Ⅰ)求曲線E的方程;
(Ⅱ)設(shè)F關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為F′,是否存在經(jīng)過(guò)點(diǎn)F的直線l交曲線E與A、B兩點(diǎn),使得△F′AB的面積為$\sqrt{5}$?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知等差數(shù)列{an}中,a3+a7=8,則該數(shù)列前9項(xiàng)和S9等于( 。
A.4B.8C.36D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{{{4^x}+2}}$.
(1)求證:f(x)+f(1-x)=$\frac{1}{2}$;
(2)設(shè)數(shù)列{an}滿足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),求an;
(3)設(shè)數(shù)列{an}的前項(xiàng)n和為Sn,若Sn≥λan(n∈N*)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{a}-{e^x}$(a>0)
(Ⅰ)求函數(shù)f(x)在[1,2]上的最大值;
(Ⅱ)若函數(shù)f(x)有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案