考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:當(dāng)q=-1時(shí),an+an+1=a1(-1)n-1+a1(-1)n=0,數(shù)列{an+an+1}是等差數(shù)列;q=1時(shí),an+an+1=2a1,數(shù)列{an+an+1}既是等差數(shù)列,又是等比數(shù)列;當(dāng)q≠±1時(shí),an+an+1=a1qn-1+a1qn=a1(1+q)qn-1,數(shù)列{an+an+1}是公比為q,首項(xiàng)為a1(1+q)的等比數(shù)列.
解答:
解:當(dāng)q=-1時(shí),
a
n+a
n+1=
a1(-1)n-1+
a1(-1)n=0,
數(shù)列{a
n+a
n+1}是:0,0,0,…,它是等差數(shù)列;
q=1時(shí),a
n+a
n+1=2a
1,
數(shù)列{a
n+a
n+1}是:2a
1,2a
1,2a
1,…,既是等差數(shù)列,又是等比數(shù)列;
當(dāng)q≠±1時(shí),a
n+a
n+1=
a1qn-1+a1qn=a
1(1+q)q
n-1,
數(shù)列{a
n+a
n+1}是公比為q,首項(xiàng)為a
1(1+q)的等比數(shù)列.
∴數(shù)列{a
n+a
n+1}是
| 等差數(shù)列,q=-1 | 既是等差數(shù)列,又是等比數(shù)列,q=1 | 等比數(shù)列,q≠±1 |
| |
.
故答案為:
| 等差數(shù)列,q=-1 | 既是等差數(shù)列,又是等比數(shù)列,q=1 | 等比數(shù)列,q≠±1 |
| |
.
點(diǎn)評:本題考查等差數(shù)列和等比數(shù)列的判斷,是基礎(chǔ)題,解題時(shí)要注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運(yùn)用.