分析 根據(jù)y=ax(a>0,且a≠1)在區(qū)間[1,2]上為單調(diào)函數(shù),且最值差為2,列出方程求出a的值.
解答 解:y=ax(a>0,且a≠1)在區(qū)間[1,2]上為單調(diào)函數(shù),
且y=ax(a>0,且a≠1)在區(qū)間[1,2]上最值差為2,
即|a-a2|=2,
所以a-a2=2或a-a2=-2;
即a2-a+2=0或a2-a-2=0,
解得a=2或a=-1(不合題意,舍去);
所以a=2.
點評 本題考查的知識點是指數(shù)函數(shù)單調(diào)性的應(yīng)用,熟練掌握指數(shù)函數(shù)的單調(diào)性是解答的關(guān)鍵
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
家具名稱 | 書桌 | 書柜 | 電腦椅 |
工 時 | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{4}$ |
產(chǎn)值(千元) | 4 | 3 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1] | B. | (-$\sqrt{3}$,1] | C. | (-2,1] | D. | [-2,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com