5.四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{2\sqrt{3}}{3}$,E為BC中點(diǎn),F(xiàn)在棱PD上,則當(dāng)EF與平面PAD所成角最大時,點(diǎn)B到平面AEF的距離為$\frac{\sqrt{3}}{2}$.

分析 證明AE⊥平面PAD.當(dāng)AF⊥PD時,線段AF長度最小,EF與平面PAD所成角最大,利用VC-AEF=VF-ADC,求出點(diǎn)B到平面AEF的距離.

解答 解:如圖,∵PA⊥平面ABCD,∴PA⊥AE,
∵底面ABCD為菱形,∠ABC=60°,E為BC中點(diǎn),
∴AE⊥BC,
∵BC∥AD,
∴AE⊥AD,
∵PA∩AE=A,
∴AE⊥平面PAD.
當(dāng)AF⊥PD時,線段AF長度最小,EF與平面PAD所成角最大.
∵AB=2,∴AE=$\sqrt{3}$,
∵PA=$\frac{2\sqrt{3}}{3}$,
∴AF=1.
在Rt△ADF中,可得F到平面ACD的距離為$\frac{\sqrt{3}}{2}$,B到平面AEF的距離等于C到平面AEF的距離h,
∴VC-AEF=VF-ADC,
∴$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}h$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\frac{\sqrt{3}}{2}$,
∴h=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評 本題考查線面垂直的證明,考查點(diǎn)到平面距離的計算,考查三棱錐體積的公式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|x2-x=0},集合B={y|-1<y<1},則A∩B=( 。
A.0B.C.{0}D.{∅}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定義在R上的函數(shù)f(x)=Asin(ωx+φ)(x>0,A>0)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間
(3)設(shè)不相等的實(shí)數(shù),x1,x2∈(0,π),且f(x1)=f(x2)=-2,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若二次函數(shù)f(x)=-x2-2x+c的最大值為4.求:
(1)f(c)的值;
(2)拋物線在x軸上方對應(yīng)的自變量x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知在數(shù)列{an}中,an=2n2-3n+5,則數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.常數(shù)列D.擺動數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=kx,g(x)=2lnx+2e($\frac{1}{e}$≤x≤e2),若f(x)與g(x)的圖象上分別存在點(diǎn)M,N,使得M,N關(guān)于直線y=e對稱,則實(shí)數(shù)k的取值范圍是( 。
A.[-$\frac{2}{e}$,-$\frac{4}{{e}^{2}}$]B.[-$\frac{2}{e}$,2e]C.[-$\frac{4}{{e}^{2}}$,2e]D.[$\frac{4}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex-kx2,x∈R.
(1)設(shè)函數(shù)g(x)=f(x)(x2-bx+2),當(dāng)k=0時,若函數(shù)g(x)有極值,求實(shí)數(shù)b的取值范圍;
(2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,矩形DCBE所在的平面垂直于圓O所在的平面,AB=4,BE=1.
(1)證明:平面ADE⊥平面ACD;
(2)當(dāng)三棱錐C-ADE的體積最大時,求直線CE與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y2=4x,點(diǎn)A(1,0)B(-1,0),點(diǎn)M在拋物線上,則∠MBA的最大值是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊答案