A. | f(x1+x2)>f(x1)+f(x2) | B. | f(x1+x2)<f(x1)+f(x2) | C. | f(x1x2)>f(x1)+f(x2) | D. | f(x1x2)<f(x1)+f(x2) |
分析 根據(jù)條件構(gòu)造函數(shù)h(x)=$\frac{f(x)}{x}$,判斷函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性進(jìn)行比較即可.
解答 解:定義在正實(shí)數(shù)集上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x)滿足f′(x)<$\frac{f(x)}{x}$,
即xf′(x)<f(x),
即f(x)-xf′(x)>0,
設(shè)h(x)=$\frac{f(x)}{x}$,則h′(x)=$\frac{f′(x)x-f(x)}{{x}^{2}}$<0,
即當(dāng)x>0時(shí),函數(shù)h(x)為減函數(shù),
不妨設(shè)x1<x2,
則$\frac{f({x}_{1})}{{x}_{1}}$>$\frac{f({x}_{2})}{{x}_{2}}$,
且$\frac{f({x}_{1}+{x}_{2})}{{x}_{1}+{x}_{2}}$<$\frac{f({x}_{2})}{{x}_{2}}$,
即f(x1+x2)<$\frac{{x}_{1}+{x}_{2}}{{x}_{2}}$•f(x2)=f(x2)+$\frac{{x}_{1}}{{x}_{2}}$•f(x2)<f(x2)+x1•$\frac{f({x}_{1})}{{x}_{1}}$=f(x1)+f(x2),
故選:B
點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)條件構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一條直線 | B. | 一條射線 | ||
C. | 一條直線和一個(gè)圓 | D. | 一條射線和一個(gè)圓 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com