10.矩陣$({\begin{array}{l}1&{{a_{12}}}&…&{{a_{1i}}}&…&{{a_{1n}}}\\ 2&{{a_{22}}}&…&{{a_{2i}}}&…&{{a_{2n}}}\\ 3&{{a_{32}}}&…&{{a_{3i}}}&…&{{a_{3n}}}\\?&?&?&?&?&?\\ n&{{a_{n2}}}&…&{{a_{ni}}}&…&{{a_{nn}}}\end{array}})$中每一行都構(gòu)成公比為2的等比數(shù)列,第i列各元素之和為Si,則$\lim_{n→∞}\frac{{{S_n}_{\;}}}{{{n^2}•{2^n}}}$=$\frac{1}{4}$.

分析 先求出Si=2i-1(1+2+…+n)=$\frac{n(n+1)}{2}$•2i-1,再求極限即可.

解答 解:∵矩陣$({\begin{array}{l}1&{{a_{12}}}&…&{{a_{1i}}}&…&{{a_{1n}}}\\ 2&{{a_{22}}}&…&{{a_{2i}}}&…&{{a_{2n}}}\\ 3&{{a_{32}}}&…&{{a_{3i}}}&…&{{a_{3n}}}\\?&?&?&?&?&?\\ n&{{a_{n2}}}&…&{{a_{ni}}}&…&{{a_{nn}}}\end{array}})$中每一行都構(gòu)成公比為2的等比數(shù)列,第i列各元素之和為Si
∴Si=2i-1(1+2+…+n)=$\frac{n(n+1)}{2}$•2i-1,
∴$\lim_{n→∞}\frac{{{S_n}_{\;}}}{{{n^2}•{2^n}}}$=$\underset{lim}{n→∞}\frac{n(n+1)}{4{n}^{2}}$=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查數(shù)列的極限與求和,考查學(xué)生的計算能力,正確求和是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.方程x2+2x+5=0的一個根是( 。
A.-1+2iB.1+2iC.-2+iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S7=70,且a1,a2,a6成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ) 設(shè)bn=$\frac{3}{{2{S_n}+4n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)g(x)=2x,若a>0,b>0且g(a)g(b)=2,則ab的取值范圍是$({0\;,\;\frac{1}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若對任意x∈R,不等式sin2x+2sin2x-m<0恒成立,則m的取值范圍是($\sqrt{2}$+1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z滿足(z-2i)(1+i)=|1+$\sqrt{3}$i|(i為虛數(shù)單位),則復(fù)數(shù)$\overline{z}$=( 。
A.1+iB.1-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)全集“U=N,集合A={x∈N|log${\;}_{\frac{1}{2}}$x≤-1},則∁UA等于 ( 。
A.{1,2}B.{1}C.{0,1,2}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1-i}{i}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在極坐標(biāo)系中,圓ρ=3上的點到直線$ρ(\sqrt{3}cosθ-sinθ)=2$的距離的最大值為4.

查看答案和解析>>

同步練習(xí)冊答案