【題目】已知圓C:x2+y2+Dx+Ey+3=0,圓C關(guān)于直線x+y﹣1=0對(duì)稱,圓心在第二象限,半徑為 .
(1)求圓C的方程;
(2)已知不過原點(diǎn)的直線l與圓C相切,且與x軸、y軸上的截距相等,求直線l的方程.
【答案】解:(1)圓C:x2+y2+Dx+3=0的坐標(biāo)C(﹣,-),
∵圓C關(guān)于直線x+y﹣1=0對(duì)稱,
∴C(﹣,-)在直線x+y﹣1=0上,
即﹣-﹣1=0,即D+E+2=0,
半徑R==,
即D2+E2=20,
解得或,此時(shí)圓心為(﹣2,1),或(1,﹣2),
∵圓心在第二象限,∴圓心坐標(biāo)為(﹣2,1),
則圓C的方程為(x+2)2+(y﹣1)2=2.
(2)設(shè)不經(jīng)過直線截距相等的直線方程為x+y=a,即x+y﹣a=0,
則圓心到直線的距離d==,
即|a+1|=2,解得a=1或a=﹣3,
故直線方程為x+y﹣1=0或x+y+3=0.
【解析】(1)求出圓心坐標(biāo),根據(jù)圓心在直線上以及圓的半徑建立方程關(guān)系即可求圓C的方程;
(2)設(shè)直線的截距式方程為x+y=a,利用直線和圓相切建立方程關(guān)系即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若b= ,c=1,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F是拋物線y2=x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到y(tǒng)軸的距離為( 。
A.
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知F1、F2是一對(duì)相關(guān)曲線的焦點(diǎn),P是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)∠F1PF2=60°時(shí),這一對(duì)相關(guān)曲線中雙曲線的離心率是( 。
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017年第二次全國(guó)大聯(lián)考江蘇卷】若無窮數(shù)列滿足:恒等于常數(shù),則稱具有局部等差數(shù)列.
(1)若具有局部等差數(shù)列,且,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有局部等差數(shù)列,并說明理由;
(3)設(shè)既具有局部等差數(shù)列,又具有局部等差數(shù)列,求證:具有局部等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)圓弧x2+y2=1(x≥0,y≥0)與兩坐標(biāo)軸正半軸圍成的扇形區(qū)域?yàn)镸,過圓弧上中點(diǎn)A做該圓的切線與兩坐標(biāo)軸正半軸圍成的三角形區(qū)域?yàn)镹.現(xiàn)隨機(jī)在區(qū)域N內(nèi)投一點(diǎn)B,若設(shè)點(diǎn)B落在區(qū)域M內(nèi)的概率為P,則P的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AC過點(diǎn)(1,0),且于直線x=﹣1相切.
(1)求圓心C的軌跡M的方程;
(2)A,B是M上的動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且 , 求證:直線AB過定點(diǎn),并求出該點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017福建4月質(zhì)檢】如圖,三棱柱中, , , 分別為棱的中點(diǎn).
(1)在平面內(nèi)過點(diǎn)作平面交于點(diǎn),并寫出作圖步驟,但不要求證明.
(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com