12.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABE是鈍角三角形,則該雙曲線的離心率e的取值范圍是( 。
A.(1,+∞)B.(1,2)C.(1,1+$\sqrt{2}$)D.(2,+∞)

分析 利用雙曲線的對稱性可得∠AEB是鈍角,得到|AF|>|EF|,求出|AF|,|CF|,得到關(guān)于a,b,c的不等式,求出離心率的范圍.

解答 解:∵雙曲線關(guān)于x軸對稱,且直線AB垂直x軸,
∴∠AEF=∠BEF,
∵△ABE是鈍角三角形,
∴∠AEB是鈍角,即有|AF|>|EF|,
∵F為左焦點(diǎn),過F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),
∴|AF|=$\frac{^{2}}{a}$,
∵|EF|=a+c,
∴$\frac{^{2}}{a}$>a+c,即c2-ac-2a2>0,
由e=$\frac{c}{a}$,可得e2-e-2>0,
解得e>2或e<-1(舍去),
則雙曲線的離心率的范圍是(2,+∞).
故選:D.

點(diǎn)評 本題考查雙曲線的對稱性、雙曲線的三參數(shù)關(guān)系:c2=a2+b2,雙曲線的離心率問題就是研究三參數(shù)a,b,c的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列函數(shù)的周期及最大值、最小值.
(1)y=sin3xcos3x;
(2)y=$\frac{1}{2}$-sin2x;
(3)y=sin(x-$\frac{π}{3}$)cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.經(jīng)過雙曲線x2-$\frac{{y}^{2}}{3}$=1的左焦點(diǎn)F1作斜率為2的弦AB,求:
(1)線段AB的長;
(2)設(shè)點(diǎn)F2為右焦點(diǎn),求△F2AB的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,圓O是△ABC的外接圓,點(diǎn)D是劣弧$\widehat{BC}$的中點(diǎn),連結(jié)AD并延長,與以C為切點(diǎn)的切線交于點(diǎn)P,求證:$\frac{PC}{PA}=\frac{BD}{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線x2-y2=1的兩條漸近線與拋物線y2=4x交于O,A,B三點(diǎn),O為坐標(biāo)原點(diǎn),則|AB|等于( 。
A.4B.6C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1的實(shí)軸長為(  )
A.6B.3C.4$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距為4,離心率為$\frac{{2\sqrt{3}}}{3}$.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)直線l:y=kx+m(k≠0,m≠0)與雙曲線C交于不同的兩點(diǎn)C,D,如果C,D能都在以點(diǎn)A(0,-1)為圓心的同一個(gè)圓上,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.與橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1有相同的焦點(diǎn),且經(jīng)過點(diǎn)P($\sqrt{2}$,-$\sqrt{2}$)的雙曲線的離心率為( 。
A.3B.$\sqrt{3}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合A={a1,a2}的子集的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案