1.用誘導(dǎo)公式求下列三角函數(shù)值(可用計(jì)算器):
(1)cos$\frac{65}{6}$π;             
(2)sin(-$\frac{31}{4}π$);           
(3)cos(-1182°13′);
(4)sin670°39′;         
(5)tan(-$\frac{26π}{3}$);           
(6)tan580°21′.

分析 先利用誘導(dǎo)公式轉(zhuǎn)化,再求三角函數(shù)值.

解答 解:(1)cos$\frac{65}{6}$π=cos$\frac{5π}{6}$=-cos$\frac{π}{6}$=-$\frac{\sqrt{3}}{2}$;             
(2)sin(-$\frac{31}{4}π$)=sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$;           
(3)cos(-1182°13′)=cos(-3×360-102°13′)=cos(102°13′)=cos(180-77°47′)=-cos(77°47′)≈-0.2116
(4)sin670°39′=sin(720°-49°21′)=-sin49°21′≈-0.759
(5)tan(-$\frac{26π}{3}$)=tan(-$\frac{2π}{3}$)=-tan$\frac{2π}{3}$=-tan(π-$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$
(6)tan580°21′=tan(720°-139°39′)=-tan(180°-40°21′)=tan40°21′≈0.85.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式,求三角函數(shù)值,考查學(xué)生的計(jì)算能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知正四棱臺(tái)的側(cè)棱長(zhǎng)為3cm,兩底面邊長(zhǎng)分別為2cm和4cm,則該四棱臺(tái)的體積為$\frac{28\sqrt{7}}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)=2x-4x
(1)若x∈[-2,2],求函數(shù)f(x)的值域;
(2)求證:函數(shù)f(x)在區(qū)間(-∞,-1]的單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.集合A={m+$\sqrt{3}$n|m2-3n2=1,且m,n∈Z},試求一個(gè)屬于A的元素a,再求和$\frac{a}{2+\sqrt{3}}$,并判斷它們是否屬于A?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知cos($\frac{π}{4}$+α)=$\frac{3}{5}$,且$\frac{7}{12}$π<α<$\frac{7}{4}$π,求$\frac{sin2α(1+tanα)}{1-tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若x>0,y>0,且x+y>2,
(1)$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=3}\end{array}\right.$,$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=\sqrt{2}}\end{array}\right.$時(shí),分別比較$\frac{1+y}{x}$和$\frac{1+x}{y}$與2的大小關(guān)系;
(2)依據(jù)(1)得出的結(jié)論,歸納提出一個(gè)滿足條件x、y都成立的命題并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知cos(75°+α)=$\frac{1}{3}$,其中α為第三象限角,則cos(105°-α)+sin(α-105°)+sin(α-15°)=$\frac{2\sqrt{2}-2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=${(\frac{4}{3})}^{-{x}^{2}+2x-3}$的單調(diào)增區(qū)間(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)$f(x)=x+\frac{p}{x-1}$(p為常數(shù),且p>0),若f(x)在(1,+∞)上的最小值為4,則實(shí)數(shù)p的值為(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案