14.已知橢圓G離心率為$\frac{\sqrt{3}}{2}$,兩準(zhǔn)線間距離為$\frac{8\sqrt{3}}{3}$,則橢圓G的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}$+y2=1或$\frac{{y}^{2}}{4}$+x2=1.

分析 設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1或$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),運(yùn)用離心率公式和準(zhǔn)線方程解方程可得a,c,再由a,b,c的關(guān)系,可得b,進(jìn)而得到所求橢圓方程.

解答 解:設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1或$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),
則e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,$\frac{2{a}^{2}}{c}$=$\frac{8\sqrt{3}}{3}$,
解得a=2,c=$\sqrt{3}$,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
即有橢圓的方程為$\frac{{x}^{2}}{4}$+y2=1或$\frac{{y}^{2}}{4}$+x2=1.
故答案為:$\frac{{x}^{2}}{4}$+y2=1或$\frac{{y}^{2}}{4}$+x2=1.

點(diǎn)評 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式和準(zhǔn)線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.冪函數(shù)f(x)=(m2-3m+3)x${\;}^{{m^2}-2m+1}}$在區(qū)間(0,+∞)上是增函數(shù),則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.方程(x-$\sqrt{{-y}^{2}+2y+8}$)$\sqrt{x-y}$=0表示的曲線為圓心為(0,1),半徑為3的右半圓和線段y=x(-2≤y≤4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.以下幾個命題中:其中真命題的序號為③④(寫出所有真命題的序號)
①設(shè)A,B為兩點(diǎn)定點(diǎn),k為非零常數(shù),|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,則動點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動弦AB,O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$則動點(diǎn)P的軌跡為橢圓;
③雙曲線$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}=1$與橢圓$\frac{{x}^{2}}{35}+{y}^{2}$=1有相同的焦點(diǎn);
④若方程2x2-5x+a=0的兩根可分別作為橢圓和雙曲線的離心率,則0<a<3;
⑤在平面內(nèi),到定點(diǎn)(2,1)的距離與到定直線3x+4y-10=0的距離相等的點(diǎn)的軌跡是拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,角A,B,C的對邊分別是a,b,c,面積為S,若S≥$\frac{1}{2}$ab,b2+ac=a2+c2,則a:b:c等于( 。
A.3:4:5B.1:1:$\sqrt{2}$C.1:$\sqrt{2}$:$\sqrt{3}$D.1:$\sqrt{3}$:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在四棱錐P-ABCD中,CD⊥平面PAD,AB∥CD,AD⊥PA,△ADC、△PAD均為等腰三角形,AD=4AB=4,M為線段CP上一點(diǎn),且$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1).
(1)若λ=$\frac{1}{4}$,求證:MB∥平面PAD;并求M到平面ABCD的距離;
(2)若λ=$\frac{1}{8}$,求二面角C-AB-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知關(guān)于x的不等式|2x+a|<b的解集為{x|1<x<2}.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)=2|x-a|+|x+b|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.當(dāng)x>0時,x2+mx+1≥0恒成立,且關(guān)于t的不等式t2+2t+m≤0有解,則實數(shù)m的取值范圍是( 。
A.[1,+∞)B.[-2,1]C.(-∞,-2]∪[1,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,在四棱錐A-BCDE中,AE⊥平面BCDE.△BCE是正三角形,BD和CE的交點(diǎn)恰好平分CE,又AE=BE=2,∠CDE=120°,AG=$\frac{\sqrt{2}}{2}$.
(1)證明:平面ABD⊥平面ACE
(2)求異面直線GF和DC所成角的余弦值
(3)求二面B-CA-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案