5.已知關(guān)于x的不等式ax2+2x+b>0(a≠0)的解集是{x|x≠-$\frac{1}{a}$,x∈R},且a>b,則$\frac{{a}^{2}+^{2}}{a-b}$的最小值是( 。
A.2$\sqrt{2}$B.2C.$\sqrt{2}$D.1

分析 由已知得ab=1,從而$\frac{{a}^{2}+^{2}}{a-b}$=$\frac{(a-b)^{2}+2}{a-b}$=(a-b)+$\frac{2}{a-b}$,由此利用基本不等式能求出$\frac{{a}^{2}+^{2}}{a-b}$的最小值.

解答 解:∵關(guān)于x的不等式ax2+2x+b>0(a≠0)的解集是{x|x≠-$\frac{1}{a}$,x∈R},且a>b,
∴a>0,且對(duì)應(yīng)方程有兩個(gè)相等的實(shí)根為-$\frac{1}{a}$
由根與系數(shù)的故關(guān)系可得-$\frac{1}{a}$•(-$\frac{1}{a}$)=$\frac{a}$,即ab=1
故$\frac{{a}^{2}+^{2}}{a-b}$=$\frac{(a-b)^{2}+2}{a-b}$=(a-b)+$\frac{2}{a-b}$,
∵a>b,∴a-b>0,
由基本不等式可得(a-b)+$\frac{2}{a-b}$≥2$\sqrt{(a-b)•\frac{2}{a-b}}$≥2$\sqrt{2}$,
當(dāng)且僅當(dāng)a-b=$\sqrt{2}$時(shí)取等號(hào).
故$\frac{{a}^{2}+^{2}}{a-b}$的最小值為:2$\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題考查代數(shù)式的最小值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意均值定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$A=\{x|\frac{1}{9}<{({\frac{1}{3}})^x}<3\}$,B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A-B={x|x∈A且x∉B},求A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若二次函數(shù)f(x)=x2-ax-a-1在[1,+∞)上單調(diào)遞增,則a的取值范圍為a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如果三條直線mx+y+3=0,x-y-2=0,2x-y+2=0不能成為一個(gè)三角形三邊所在的直線,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在矩形ABCD中,已知AD=1.5,AB=a(a>1.5),E,F(xiàn),G,H分別是邊AD,AB,BC,CD上的動(dòng)點(diǎn),且滿足AE=AF=CG=CH.若AE=x,當(dāng)x變化時(shí).
(1)求四邊形EFGH的面積S關(guān)于x的函數(shù)解析式,寫出其定義域.
(2)當(dāng)x取何值時(shí),S有最大值,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“a=2”是“函數(shù)f(x)=xa-2為偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.極限$\underset{lim}{x→+∞}$[cos$\sqrt{x+1}$-cos$\sqrt{x}$]的結(jié)果是(  )
A.無窮大B.0
C.-$\frac{1}{2}$D.不存在,也不是無窮大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距與短半軸相等,且經(jīng)過點(diǎn)(0,2),則該橢圓的方程是$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某公司通過初試和復(fù)試兩輪考核確定最終合格人員,當(dāng)?shù)谝惠喅踉嚭细窈蠓娇蛇M(jìn)入第二輪復(fù)試,兩次考核過程相互獨(dú)立.根據(jù)甲、乙、丙三人現(xiàn)有的水平,第一輪考核甲、乙、丙三人合格的概率分別為0.4、0.6、0.5,第二輪考核,甲、乙、丙三人合格的概率分別為0.5、0.5、0.4.
(1)求第一輪考核后甲、乙兩人中只有乙合格的概率;
(2)設(shè)甲、乙、丙經(jīng)過前后兩輪考核后合格人選的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案