【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中, 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過(guò)且與曲線相切, 求直線的極坐標(biāo)方程;
(2)點(diǎn) 與點(diǎn)關(guān)于軸對(duì)稱, 求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
【答案】(1)根據(jù)將極坐標(biāo)化為直角坐標(biāo);根據(jù)消參數(shù)得普通方程,再根據(jù)圓心到切線距離等于半徑得切線斜率或,最后根據(jù)將直線點(diǎn)斜式化為極坐標(biāo)方程(2)先得,再根據(jù)圓的性質(zhì)得曲線上的點(diǎn)到點(diǎn)的距離的最小值為,最大值為,即可求取值范圍
【解析】
試題解析:(1)由題意得點(diǎn)的直角坐標(biāo)為,曲線的一般方程為,設(shè)直線的方程為,即,直線過(guò)且與曲線相切,, 即,解得或,直線的極坐標(biāo)方程為或.
(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱, 點(diǎn)的直角坐標(biāo)為,則點(diǎn)到圓心的距離為,曲線上的點(diǎn)到點(diǎn)的距離的最小值為,最大值為,
曲線上的點(diǎn)到點(diǎn)的距離的取值范圍為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>,若存在閉區(qū)間[m,n] D,使得函數(shù)滿足:①在[m,n]上是單調(diào)函數(shù);②在[m,n]上的值域?yàn)?/span>[2m,2n],則稱區(qū)間[m,n]為的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有 .(填上所有正確的序號(hào))
①;
②;
③;
④.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),點(diǎn)分別在的圖象上.
(1)若函數(shù)在處的切線恰好與相切,求的值;
(2)若點(diǎn)的橫坐標(biāo)均為,記,當(dāng)時(shí),函數(shù)取得極大值,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書店銷售剛剛上市的某知名品牌的高三數(shù)學(xué)單元卷,按事先擬定的價(jià)格進(jìn)行天試銷,每種單價(jià)試銷天,得到如下數(shù)據(jù):
單價(jià)(元) | |||||
銷量(冊(cè)) |
(1)求試銷天的銷量的方差和對(duì)的回歸直線方程;
(2)預(yù)計(jì)今后的銷售中,銷量與單價(jià)服從(1)中的回歸方程,已知每?jī)?cè)單元卷的成本是元,
為了獲得最大利潤(rùn),該單元卷的單價(jià)應(yīng)定為多少元?
附: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某港口要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時(shí),輪船位于港口北偏西且與該港口相距20海里的處,并以30海里/時(shí)的航行速度沿正東方向勻速行駛,假設(shè)該小船沿直線方向以海里/時(shí)的航行速度勻速行駛,經(jīng)過(guò)小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/時(shí),試設(shè)計(jì)航行方案(即確定航行方向與航行速度的大。,使得小艇能以最短時(shí)間與輪船相遇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了某公司技術(shù)升級(jí)后生產(chǎn)產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的成本(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出對(duì)的回歸直線方程;
(3)已知該公司技術(shù)升級(jí)前生產(chǎn)100噸產(chǎn)品的成本為90萬(wàn)元.試根據(jù)(2)求出的回歸直線方程,預(yù)測(cè)技術(shù)升級(jí)后生產(chǎn)100噸產(chǎn)品的成本比技術(shù)升級(jí)前約降低多少萬(wàn)元?
(附: , ,其中為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點(diǎn),E、F、G分別是BC、CD和SC的中點(diǎn).求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解高中生上學(xué)使用手機(jī)情況,調(diào)查者進(jìn)行了如下的隨機(jī)調(diào)查:調(diào)查者向被調(diào)查者提出兩個(gè)問(wèn)題:(1)你的學(xué)號(hào)是奇數(shù)嗎?(2)你上學(xué)時(shí)是否經(jīng)常帶手機(jī)?要求被調(diào)查者背對(duì)著調(diào)查人員拋擲一枚硬幣,如果出現(xiàn)正面,就回答第一問(wèn)題,否則就回答第二個(gè)問(wèn)題.被調(diào)查者不必告訴調(diào)查人員自己回答的是哪一個(gè)問(wèn)題,只需回答“是”或“不是”,因?yàn)橹挥斜徽{(diào)查者本人知道回答了哪一個(gè)問(wèn)題,所以都如實(shí)地做了回答.結(jié)果被調(diào)查的800人(學(xué)號(hào)從1至800)中有260人回答了“是”.由此可以估計(jì)這800人中經(jīng)常帶手機(jī)上學(xué)的人數(shù)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對(duì)任意,點(diǎn)都在函數(shù)的圖像上.
(I)求數(shù)列的首項(xiàng)和通項(xiàng)公式;
(II)若數(shù)列滿足,求數(shù)列的前項(xiàng)和;
(III)已知數(shù)列滿足.若對(duì)任意,存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com