分析 根據(jù)題意得出|x+2|>a-|x-4|,化為a<|x+2|+|x-4|恒成立,求出h(x)=|x+2|+|x-4|的最小值即可得出結(jié)論.
解答 解:∵函數(shù)f(x)=|x+2|的圖象恒在函數(shù)g(x)=a-|x-4|的圖象的上方,
∴|x+2|>a-|x-4|,
即不等式a<|x+2|+|x-4|恒成立,
令h(x)=|x+2|+|x-4|
由|x+2|+|x-4|≥|(x+2)+(4-x)|=6,
得h(x)min=6,
則實數(shù)a的取值范圍a<6.
故答案為:(-∞,6).
點評 本題考查了絕對值不等式的性質(zhì)以及不等式恒成立的問題,解題時應(yīng)注意運用參數(shù)分離和分類討論的思想,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | ||
C. | $\frac{1}{4}$ | D. | 不是定值,與t的值相關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 4 | C. | $±2\sqrt{2}$ | D. | ±4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | 1 | 2 | 3 | 4 |
P | $\frac{1}{6}$ | $\frac{1}{4}$ | m | $\frac{1}{3}$ |
A. | $\frac{7}{12}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{12}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com