分析 由橢圓$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,可得a=3,b=2,$c=\sqrt{{a}^{2}-^{2}}$.可得:左焦點(diǎn)F$(-\sqrt{5},0)$,把x=-$\sqrt{5}$代入橢圓方程解出即可得出.
解答 解:由橢圓$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,可得a=3,b=2,$c=\sqrt{{a}^{2}-^{2}}$=$\sqrt{5}$.
∴左焦點(diǎn)F$(-\sqrt{5},0)$,
把x=-$\sqrt{5}$代入橢圓方程可得:$\frac{5}{9}+\frac{{y}^{2}}{4}$=1,解得y=±$\frac{4}{3}$.
∴與長(zhǎng)軸垂直的弦的端點(diǎn)坐標(biāo)為$(-\sqrt{5},±\frac{4}{3})$,弦長(zhǎng)為$\frac{8}{3}$.
故答案分別為:$(-\sqrt{5},±\frac{4}{3})$;$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長(zhǎng)問題,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,0)和(0,1) | B. | (1,0)和(0,-1) | C. | (-1,0)和(0,-1) | D. | (-1,0)和(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com