9.與圓O1:x2+y2=1和圓O2:x2+y2-6x-8y+9=0都相切的直線條數(shù)是( 。
A.1B.2C.3D.4

分析 求出兩個(gè)圓的圓心和半徑,根據(jù)圓圓之間的位置關(guān)系的條件即可得到結(jié)論.

解答 解:圓O1:x2+y2=1圓心為O1(0,0),半徑為R=1,
圓O2:x2+y2-6x-8y+9=0的標(biāo)準(zhǔn)方程為(x-3)2+(y-4)2=16,圓心為O2(3,4),半徑為r=4,
則|O1O2|=5=R+r,
故圓O1和圓O2的位置關(guān)系是外切,
所以與圓O1:x2+y2=1和圓O2:x2+y2-6x-8y+9=0都相切的直線條數(shù)是3.
故選:C.

點(diǎn)評(píng) 本題主要考查圓與圓的位置關(guān)系的判斷,求出圓的圓心和半徑是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知三個(gè)集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-bx+2=0},問同時(shí)滿足B⊆A,A∪C=A的實(shí)數(shù)a、b是否存在?若存在,求出a、b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知P(xp,5)是雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$(a>0,b>0)上的一點(diǎn),F(xiàn)1,F(xiàn)2分別是雙曲線的左,右焦點(diǎn),若|PF1|•|PF2|=$\frac{9}{4}$ac,△PF1F2的內(nèi)切圓的面積為4π,則雙曲線Γ的漸近線方程為( 。
A.y=$±\sqrt{2}$xB.y=±$\frac{\sqrt{7}}{3}$xC.y=±$\frac{4}{3}$xD.y=±$\sqrt{6}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知A={2,3,4},B={x||x|<3},則A∩B=( 。
A.{3}B.{2,3}C.{2}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.冪函數(shù)y=xm(m∈Z)的圖象如圖所示,則m的值可以為( 。 
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,a,b,c分別為角A、B、C的對邊,若a=2,b=2$\sqrt{3}$,∠A=30°,則∠B等于( 。
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.經(jīng)過兩圓x2+y2=9和(x+4)2+(y+3)2=8的交點(diǎn)的直線方程為(  )
A.8x+6y+13=0B.6x-8y+13=0C.4x+3y+13=0D.3x+4y+26=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某高校在2015年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,成績都為整數(shù)且全部分布在[160,185].按成績分5組[160,165),[165,170),[170,175),[175,180),[180,185],畫出如下部分頻率分布直方圖.觀察圖形,根據(jù)給出的信息,回答下列問題:

(1)求第二小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣選取6名學(xué)生進(jìn)入第二輪面試,求:
①第3、4、5組每組各選取多少名學(xué)生進(jìn)入第二輪面試?
②高校決定從參加二輪面試的6名學(xué)生中隨機(jī)選派2名到北京大學(xué)學(xué)習(xí)交流,求這兩人在同一分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.集合A={0,1,2},B={x|-1<x<2},則A∩B={0,1}.

查看答案和解析>>

同步練習(xí)冊答案