14.如圖:在四棱錐P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=DA=DC=2.
(1)若M、N分別是PD、AB的中點,證明:MN∥平面PBC;
(2)求二面角C-BP-D的大。

分析 (1)欲證MN∥平面PBC,根據(jù)MN?平面MNE,可先證平面MNE∥平面PBC,取CD中點E,連接ME,NE,根據(jù)中位線可知ME∥PC,NE∥BC,又ME,NE?平面MNE,ME∩NE=E,滿足平面與平面平行的判定定理,最后根據(jù)性質定理可知結論;
(2)利用面積射影法,求出二面角C-BP-D的大。

解答 (1)證明:取CD中點E,連接ME,NE,
由已知M、N分別是PD、AB的中點,
∴ME∥PC,NE∥BC
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PBC,
所以,MN∥平面PBC;
(2)解:作DO⊥PC,則DO⊥平面PBC,△OPB為△DPB在平面中的射影,
因為△OPB中,PO=$\sqrt{2}$,所以S△OPB=$\frac{1}{2}×\sqrt{2}×2$=$\sqrt{2}$.
因為△DPB中,PD=2,BD=2$\sqrt{2}$,所以S△DPB=$\frac{1}{2}×2\sqrt{2}×2$=2$\sqrt{2}$,
所以二面角C-BP-D的余弦值為$\frac{1}{2}$,大小為60°.

點評 本小題主要考查直線與平面的位置關系、二面角及其平面角等有關知識,考查空間想象能力和思維能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.方程|x2-4x+3|=a有且僅有三個不等實數(shù)根,則實數(shù)a滿足( 。
A.a=1B.a>1或a=0C.0<a≤1D.0<a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an}和前n項和為Sn,且Sn=n2+3n+1,則an=$\left\{\begin{array}{l}{5,n=1}\\{2n+2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知等差數(shù)列{an}滿足:d≠0,a10=5,Sk+3-Sk=15,則k=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列關于命題的說法正確的是( 。
A.命題“若x2=1則x=1”的否命題為“若x2=1,則x≠1”
B.命題“冪函數(shù)f(x)=(m2-m-1)xm在(0,+∞)上為增函數(shù),則m=-1”為真命題
C.命題“若x=y則sinx=siny”的逆否命題為真命題
D.命題“?x0∈R,x02+x0+1<0”的否定是“?x∈R,x2+x+1>0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若橢圓$\frac{x^2}{25}+\frac{y^2}{m}$=1與雙曲線x2-15y2=15的焦距相等,則m的值為9或41.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.兩直線3x-2y-1=0與3x-2y+1=0平行,則它們之間的距離為( 。
A.4B.$\frac{2}{13}\sqrt{13}$C.$\frac{5}{26}\sqrt{13}$D.$\frac{7}{20}\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在某科普雜志的一篇文章中,每個句子的字數(shù)如下:
10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17
在某報紙的一篇文章中,每個句子的字數(shù)如下:
27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)不計算僅從莖葉圖中兩組數(shù)據(jù)的分布情況對數(shù)據(jù)進行比較,得到什么結論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,若曲線y=f(x)在點(1,f(1))處的切線垂直于直線x-3y=0,則切線方程為3x+y-4=0.

查看答案和解析>>

同步練習冊答案