分析 先將雙曲線的方程化為標(biāo)準(zhǔn)方程,求出雙曲線和橢圓的焦距,即可得出結(jié)論.
解答 解:雙曲線x2-15y2=15即為:$\frac{{x}^{2}}{15}$-y2=1,c2=a2+b2=15+1=16,c=4,
焦點(diǎn)為(±4,0),
橢圓$\frac{x^2}{25}+\frac{y^2}{m}$=1的a′=5,b′=$\sqrt{m}$,c′=4,或a′=$\sqrt{m}$,b′=5,c′=4
∴25=m+16,或m=25+16,
∴m=9或41.
故答案為:9或41.
點(diǎn)評(píng) 本題考查橢圓和雙曲線的方程和性質(zhì),注意它們的區(qū)別,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | [0,0.5) | [0.5,1) | [1,1.5) | [1.5,2) | [2,1.5) | [2.5,3) | [3,3.5) | [3.5,4) | [4,4.5) |
頻數(shù) | 4 | 8 | 15 | 22 | 25 | 14 | 6 | 4 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com