分析 根據(jù)已知函數(shù)的圖象,可分析出函數(shù)的最值,確定A的值,分析出函數(shù)的周期,確定ω的值,將($\frac{π}{3}$,0)代入解析式,可求出φ值,進(jìn)而求出函數(shù)的解析式.
解答 解:由函數(shù)圖象可得:A=$\sqrt{2}$,周期T=4($\frac{7π}{12}-\frac{π}{3}$)=π,由周期公式可得:ω=$\frac{2π}{π}$=2,
由點(diǎn)($\frac{π}{3}$,0)在函數(shù)的圖象上,可得:$\sqrt{2}$sin(2×$\frac{π}{3}$+φ)=0,
解得:φ=kπ-$\frac{2π}{3}$,k∈Z,|φ|<π,
當(dāng)k=1時(shí),可得φ=$\frac{π}{3}$,當(dāng)k=0時(shí),可得φ=-$\frac{2π}{3}$,
從而得解析式可為:f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$),或f(x)=$\sqrt{2}$sin(2x-$\frac{2π}{3}$).
由于,點(diǎn)($\frac{7π}{12}$,-$\sqrt{2}$)在函數(shù)圖象上,驗(yàn)證可得:f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$).
故答案為:f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$).
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦型函數(shù)解析式的求法,其中關(guān)鍵是要根據(jù)圖象分析出函數(shù)的最值,周期等,進(jìn)而求出A,ω和φ值,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+4$\sqrt{2}$ | B. | 4+4$\sqrt{3}$ | C. | 6+2$\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x軸對稱 | B. | y軸對稱 | C. | 原點(diǎn)對稱 | D. | 直線y=x對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12π | B. | 8π | C. | $\frac{8π}{3}$ | D. | $\frac{20π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com