分析 求出命題p:m>2,命題q:1<m<3,再由“p”為假命題,“q”為真命題,能求出m的取值范圍.
解答 解:∵p:方程x2+mx+1=0有兩個不相等的負(fù)實根,
∴$\left\{\begin{array}{l}{{m}^{2}-4>0}\\{m>0}\end{array}\right.$,∴m>2,
又∵q:方程4x2+4(m-2)x+1=0無實根,
∴△=4(m-2)2-4×4<0,
∴1<m<3,
∵“p”為假命題,“q”為真命題,
∴$\left\{\begin{array}{l}{m≤2}\\{1<m<3}\end{array}\right.$,∴1<m≤2.
∴m的取值范圍是(1,2].
點評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意根的判別式及不等式性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 經(jīng)過空間中的三點,有且只有一個平面 | |
B. | 空間中,如果兩個角的兩條邊分別對應(yīng)平行,那么這兩個角相等 | |
C. | 空間中,兩條異面直線所成角的范圍是(0,$\frac{π}{2}$] | |
D. | 如果直線l平行于平面α內(nèi)的無數(shù)條直線,則直線l平等于平面α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>b>a | B. | c>a>b | C. | b>c>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com