分析 利用拋物線的性質(zhì)、雙曲線的漸近線、直線平行的性質(zhì)、圓的性質(zhì)、相似三角形的性質(zhì)即可得出.
解答 解:如圖,設(shè)拋物線y2=4cx的準(zhǔn)線為l,作PQ⊥l于Q,
設(shè)雙曲線的右焦點(diǎn)為F′,P(x,y).
由題意可知FF′為圓x2+y2=c2的直徑
∴PF′⊥PF,且tan∠PFF′=$\frac{a}$,|FF′|=2c,
滿(mǎn)足$\left\{\begin{array}{l}{{y}^{2}=4cx①}\\{{x}^{2}+{y}^{2}={c}^{2}②}\\{\frac{y}{x+c}=\frac{a}③}\end{array}\right.$,
將①代入②得x2+4cx-c2=0,
則x=-2c±$\sqrt{5}$c,
即x=($\sqrt{5}$-2)c,(負(fù)值舍去)
代入③,即y=$\frac{(\sqrt{5}-1)bc}{a}$,再將y代入①得,$\frac{^{2}}{{a}^{2}}$=$\frac{4(\sqrt{5}-2)}{(\sqrt{5}-1)^{2}}$=e2-1
即e2=$\frac{\sqrt{5}+1}{2}$.
故答案為:$\frac{\sqrt{5}+1}{2}$.
點(diǎn)評(píng) 本題考查雙曲線的性質(zhì),掌握拋物線的性質(zhì)、雙曲線的漸近線、直線平行的性質(zhì)、圓的性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $2\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2-$\sqrt{3}$ | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\sqrt{2}$+$\sqrt{3}$ | D. | 2+$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com