分析 由題意可得 sin(θ+α)=$\frac{{2x}^{2}}{\sqrt{{16x}^{2}+9}}$,故有 $\frac{{2x}^{2}}{\sqrt{{16x}^{2}+9}}$≤1,由此求得x的范圍.
解答 解:由題意可得,存在實(shí)數(shù)θ,使4xsinθ-3cosθ=2x2 成立,
即$\sqrt{{16x}^{2}+9}$sin(θ+α)=2x2,即 sin(θ+α)=$\frac{{2x}^{2}}{\sqrt{{16x}^{2}+9}}$,(其中,cosα=$\frac{4x}{\sqrt{{16x}^{2}+9}}$,sinα=$\frac{-3}{\sqrt{{16x}^{2}+9}}$,0≤α<2π)
∴$\frac{{2x}^{2}}{\sqrt{{16x}^{2}+9}}$≤1,求得-$\frac{1}{2}$≤x2≤$\frac{9}{2}$,可得-$\frac{3\sqrt{2}}{2}$≤x≤$\frac{3\sqrt{2}}{2}$,
故答案為:[-$\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$].
點(diǎn)評 本題主要考查輔助角公式、正弦函數(shù)的值域,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com