9.cosα+$\sqrt{3}$sinα的值是(  )
A.$\frac{1}{2}$sin($\frac{π}{6}$+α)B.2sin($\frac{π}{3}$+α)C.2sin($\frac{π}{6}$+α)D.$\frac{1}{2}$cos($\frac{π}{3}$+α)

分析 由條件利用兩角和的正弦公式,求得結(jié)果.

解答 解:cosα+$\sqrt{3}$sinα=2($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)=2sin(α+$\frac{π}{6}$),
故選:C.

點評 本題主要考查兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}前n項和為Sn,滿足${S_n}=2{a_n}-2n(n∈{N^*})$
(1)證明:{an+2}是等比數(shù)列,并求{an}的通項公式;
(2)數(shù)列{bn}滿足bn=log2an+2,Tn為數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.解關(guān)于x的不等式:12x2-ax-a2<0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義在[0,+∞)上的函數(shù)f(x)滿足:對任意x,y總有f(x+y)=f(x)f(y),f(x)不恒為零,當(dāng)x>0時,f(x)>1.
(1)判斷f(x)的單調(diào)性;
(2)若f(2)=2,解不等式f(5x-x2)>8;
(3)設(shè)A={(x,y)|f(x2)f(y2)≤f(1)},且B={(x,y)|f(ax-y+$\sqrt{2}$)=1,a∈R},若A∩B=∅,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是不共線向量,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow$=6$\overrightarrow{{e}_{1}}$-8$\overrightarrow{{e}_{2}}$,問$\overrightarrow{a}$與$\overrightarrow$是否共線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α=$\frac{7π}{5}$,則角α的終邊位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若不等式ax2+3x+5>0在區(qū)間[1,6]上恒成立,則實數(shù)a的取值范圍為a>-$\frac{23}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的各項均正數(shù),滿足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$-2an+1-2an=0,其前n項和為Sn.S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,數(shù)列{bn}的前n項和為Tn,是否存在最大整數(shù)m,使得對任意n∈N*均有T2n>$\frac{m}{15}$成立?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案