19.“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是“曲線C的方程是f(x,y)=0”的(  )條件.
A.充分B.必要
C.充要D.既不充分也不必要

分析 由“曲線C的方程是f(x,y)=0”可得:“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”,反之不成立.即可判斷出關(guān)系.

解答 解:由“曲線C的方程是f(x,y)=0”可得:“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”,反之不成立.
因此“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是“曲線C的方程是f(x,y)=0”的必要不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查了曲線的方程的應(yīng)用、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.直線$\sqrt{3}$x-y+1=0的傾斜角的大小為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.過(guò)曲線y=f(x)=x2+1上兩點(diǎn)P(1,2)和Q(1+△x,2+△y)作曲線的割線,當(dāng)△x=0.1時(shí),割線的斜率k=2.1,當(dāng)△x=0.001時(shí),割線的斜率k=2.001.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知0<a<1,f(ax)=x+$\frac{1}{x}$
(1)求f(x)的解析式,并求出f(x)的定義域
(2)判斷并證明f(x)在[$\frac{1}{a}$+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)滿足$\underset{lim}{x→0}$$\frac{f(1)-f(1-x)}{x}$=-1,則f′(1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.Rt△ABC頂點(diǎn)A(0,0),B(0,4),C(-2,0),則△ABC內(nèi)角∠A的平分線方程是( 。
A.y=-xB.y=-$\frac{1}{2}$x(-$\frac{6}{5}$≤x≤0)C.y=-x(-$\frac{4}{5}$≤x≤0)D.y=-$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.第三象限的角的集合用角度制可表示為{α|180°+k•360°<α<270°+k•360°,k∈Z},用弧度制可表示為{α|π+2kπ<α<$\frac{3π}{2}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.二次函數(shù)y=ax2+bx+c的系數(shù)a、b、c互不相等,它們都在集合{-4,-3,-2,-1,0,1,2,3}中取值.求:
(1)開(kāi)口向上的拋物線條數(shù);
(2)過(guò)原點(diǎn)的拋物線條數(shù);
(3)原點(diǎn)在拋物線內(nèi)的拋物線條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.平面直角坐標(biāo)系xOy中,點(diǎn)A(-2,0),B(2,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積是$-\frac{3}{4}$.
(1)求點(diǎn)M的軌跡C的方程;
(2)直線l:y=x-1與曲線C相交于P1,P2兩點(diǎn),Q是x軸上一點(diǎn),若△P1P2Q的面積為$6\sqrt{2}$,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案